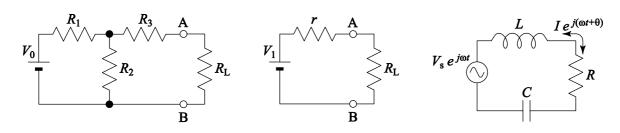
平成18年度弁理士試験論文式筆記試験問題


「回路理論]

1.理想的な電源、抵抗、キャパシタンス、インダクタンスで構成された回路に関する以下の問いに答えよ。

【30点】

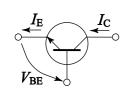

- (1) 図 1 (a)のように直流電源 V_0 と抵抗 $R_1 \sim R_3$ からなる回路の端子 AB 間に、負荷抵抗 R_L を接続することを考える。この回路は、任意の負荷抵抗 R_L に対して図 1 (b)のよう に書き直すことができる。今、 $V_0=4$ V、 $R_1=100$ Ω 、 $R_2=300$ Ω 、 $R_3=125$ Ω としたとき、 V_1 および T を求めよ。
- (2) (1)の回路において、負荷抵抗 R_L で消費される電力 P が最大となる R_L の値とその 時の消費電力 P を求めよ。
- (3) 図 1 (c)の回路において、交流電圧 $V_s e^{j\omega t}$ を印加したときに流れる電流の振幅 I および位相角 θ の角周波数 ω に対する依存性の表式を求め、その概形を図示せよ。
- (4) (3)において、 $V_s = 10$ V、R = 1 k Ω 、L = 50 mH、C = 0.2 μ F としたとき、回路全体での無効電力が最小となる角周波数と、その時に消費される有効電力を求めよ。

図 1 (a) 図 1 (b) 図 1 (c)

- 2.理想的な抵抗、トランジスタ、演算増幅器を含む回路に関する以下の問いに答えよ。 【20点】
- (1) 図 2 (a)のようなトランジスタでは、エミッタ電流 I_E およびコレクタ電流 I_C は、それぞれ、 $I_E = I_s \{exp(\beta V_{BE}) 1\}$ および $I_C = \alpha I_E$ で与えられることが知られている。ここで $\beta = q/kT$ (q:電気素量、k:ボルツマン定数、T:絶対温度)、 I_s は飽和電流、 α は電流増幅率である。このようなトランジスタを使って図 2 (b)のような回路を構成したとき、負荷抵抗 R_L 両端に現れる電圧 $V_{\rm out}$ を入力電圧 $V_{\rm in}$ の関数として表せ。
- (2) 演算増幅器と一般的なインピーダンス Z_1 、 Z_2 で構成された図 2 (c)の回路における 伝達関数 ($V_{\rm out}/V_{\rm in}$) を求めよ。
- (3) (1)と同じトランジスタを使った図 2 (d)の回路における出力電圧 V_{out} は、入力電圧 V_{in} に対してある種の関数変換を行ったものになる。どのような変換であるかを、その表式を用いて答えよ。なお、 $V_{\text{in}}>>\alpha RI_{\text{s}}$ としてよい。

図 2 (a)

 $V_{\rm in}$ \nearrow $R_{\rm L}$ $V_{\rm out}$

図 2 (c)

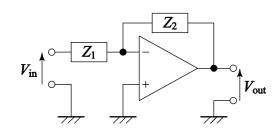
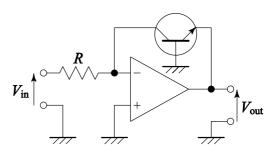



図 2 (d)

 $V_{
m offset}$

論点[回路理論]

- 1.線形素子を用いた回路に関する一般的な理解を問う。
- (1) 回路方程式もしくは鳳・テブナンの定理に関する理解を問う。
- (2) 抵抗による電力の消費に関する理解を問う。
- (3) (4) 交流回路の取り扱いと交流電力に関する理解を問う。
- 2. 非線形素子であるトランジスタや、演算増幅器を含む回路を正しく取り扱うことができるか、を問う。
- (1) トランジスタにおける電圧・電流特性に関する理解を問う。
- (2) 理想的な演算増幅器の入出力特性に関する理解を問う。
- (3) 非線形素子を帰還ループに用いた回路の伝達関数の解法に関する理解を問う。