バイオ特許

特許庁
(社)発明協会アジア太平洋工業所有権センター

©2010

執筆協力：平木国際特許事務所
所長 弁理士 平木 祐輔
副所長 弁理士 藤田 節
目次

1. はじめに .. 1

2. バイオテクノロジーの成果と保護対象.. 1

3. 生物自体の保護... 2

3-1. 欧州における生物自体の保護 ... 3

3-1-1. 欧州における植物自体の保護とUPOV条約 ... 3

(1) 欧州における植物品種保護とUPOV条約 ... 3

i. 1930年代～1961年のUPOV条約署名までの動向 ... 3

ii. 1961年UPOV条約署名以降 .. 5

 ii-1. 1968年UPOV条約発効 ... 5

 ii-2. 1973年欧州特許条約署名、1978年発効 ... 5

 ii-3. 1978年のUPOV条約の改正 .. 5

 ◎ 1978年改正UPOV条約の概要 .. 8

 ii-4. 1991年改正UPOV条約署名、1998年発効 ... 11

 ◎ 1991年改正UPOV条約の主要な改正点 ... 11

 ii-5. 1995年の共同体植物品種権规则の成立 ... 12

(2) 欧州における包括的植物の特許... 12

i. EPOの包括的植物の特許性を肯定する審決の背景 ... 12

ii. EPCの下で非品種植物の特許性を肯定した審決 .. 13

iii. EPCの下で包括的動物の特許性を肯定した審決…包括的植物の

 特許性の肯定につながる ... 14

iv. 1998年7月6日EUバイオ指令採択、同年7月30日発行後の欧州におけるEU加盟国の包括的植物の

 特許の開始乃至再開 .. 14

v. EPC規則改正及びNovartis事件拡大審判部の意見によるEPOの

 包括的植物の特許再開 ... 15

vi. 本質的に生物学的方法 .. 16

3-1-2. 欧州における動物自体の保護 ... 16

(1) 1992年のEPOの動物特許第1号付与以前の状況 ... 16
(2) 1992年EPOの動物特許第1号付与以降の状況

i. 1992年EPOにおける動物特許第1号（欧州特許第169672）の付与...

ii. EUバイオ指令及び改正EPC規則による動物特許の肯定

3-1-3. 欧州における微生物自体の保護

(1) “育種過程の反復可能性必須説”に基づく西独最高裁判決

(2) EPOにおける、微生物自体の発明に関する増殖過程反復可能性容認

(3) “増殖過程の反復可能性容認説”に基づく西独最高裁判決

3-2. 米国における生物自体の保護

3-2-1. 米国における植物自体の保護

(1) 植物特許の品種保護の概要

i. 植物特許の品種保護の概要

ii. 植物特許のクレーム側

(2) 1970年制定の植物品種保護法による保護

i. PVPAによる品種保護の概要

(3) 米国におけるutility patentによる植物の特許の動向

i. Utility patentによる植物保護の概要

ii. 植物等に関するutility patentのクレーム例

(4) 米国における植物の各保護制度の対比

i. 各制度の利用上の優位性

ii. 育種技術による棲み分け

3-2-2. 米国における動物の保護

3-2-3. 米国における微生物自体の保護

3-3. 日本における生物自体の保護

3-3-1. 日本における植物自体の保護

(1) 日本における植物品種保護

(2) 日本における植物の特許

i. 植物の特許に関する審査基準、審査の運用指針

ii. 植物に関する審査基準の規定

3-3-2. 日本における動物自体の保護

3-3-3. 日本における微生物自体の保護

3-4. 日欧米以外の国における生物自体の保護
4. 遺伝子関連発明の保護... 31
 4-1. 遺伝子関連発明の開示とクレーム... 31
 4-1-1. 出願明細書における発明の開示.................................. 31
 4-1-2. 開示における実施可能要件..................................... 31
 4-1-3. 遺伝子関連発明における請求項の記載........................ 32
 (1) 遺伝子関連発明におけるクレームの一般的問題............... 32
 (2) 日本において許容される遺伝子関連発明のクレームの広さの変遷 34
 i. 配列による限定を原則とする遺伝子及び組換え蛋白質のクレーム
 並びにその問題点... 34
 ii. t - P A 事件及び均等論................................ 35
 iii. 日本において許容されている包括的クレームの典型的表現形式. 37
 4-2. 遺伝子関連発明の記載要件、及び有用性(産業上の利用性)...... 40
 4-2-1. 遺伝子関連発明の有用性あるいは産業上の利用可能性..... 40
 4-2-2. E S T s の発明の特許性.. 40
 4-2-3. 明細書の記載要件、有用性の見直し............................ 41
 4-2-4. リーチスルークレーム
 (現在開示される発明に基づく将来の発明クレーム) 42
 4-2-5. 遺伝子関連発明の新規性および進歩性..................... 43
 (1) 日本の審査基準における遺伝子関連発明の新規性及び進歩性判断の規定.... 43
 (2) E P O における遺伝子の進歩性判断の運用..................... 45
 (3) 米国における obvious - to - try に基づく遺伝子の進歩性判断を不適切とする判決 45

5. その他の問題... 46
 5-1. 生物材料の寄託制度... 46
 5-2. 生物多様性条約... 49
 (1) 生物多様性条約成立の背景.. 49
 (2) 本条約の概要.. 49
 i. 本条約の目的... 49
 ii. 条約の主要規定.. 49
 iii. 知的財産権との関係... 50
 5-3. 再生医療技術、幹細胞技術に関する問題点............................ 50
 5-3-1. 幹細胞の保護 倫理的側面、公共的側面................. 50
 5-3-2. 日本における細胞治療の細胞調製と産業上の利用性......... 51
1. はじめに

バイオテクノロジーは21世紀に向けてその発展が最も期待される先端技術の一つであり、現在の「情報社会」の次世代は「バイオ社会」となるとすら言われている。

いずれにしても、その応用分野は、化学工業、医薬品工業、食品工業、農林水産業、電気・機械産業、資源・エネルギー産業、環境浄化、医療、法医学的情報産業等々と多岐に渡り、21世紀の人類の福利にとってその重要度が飛躍的に高まって行くことは間違いない。

そして、特に遺伝子工学に代表されるいわゆるニューバイオテクノロジーの絶えざる発展に伴い、バイオテクノロジーの成果に対する特許等の知的所有権保護に関しても、次々と新しい問題点が現れ、国内的、国際的に新たな議論を呼び、また、国際的な特許係争事件が相次いで発生する状況となっている。

以下、このようなバイオテクノロジーの成果に対する、特許制度及び植物品種保護制度における知的所有権の保護の特徴、権利取得上の問題点、関連する国際条約等について述べる。

なお、バイオテクノロジー成果の保護のうち、植物の保護に関しては、一般の特許制度とは別の、主としてUPOV条約に基づく植物品種保護制度がある。しかし、この植物品種保護制度も特許制度と同様の工業所有権の制度であり、両者は密接に関連した保護制度であるので、ここでは植物品種保護制度の問題も、バイオ特許の問題に含めて論ずることとする。

2. バイオテクノロジーの成果と保護対象

バイオテクノロジーという用語には、広い意味で、古くから行われていた酒、醤油、チーズ等の発酵製品の製法や、選抜、交配等の動物・植物品種の伝統的育種法などのオールドバイオテクノロジーと、遺伝子工学に代表されるニューバイオテクノロジーとが含まれる。

そして、これらバイオテクノロジーの成果はおおむね次の4つに分けられ、これらを特許等の知的所有権の保護対象として適切に保護することが、バイオテクノロジーの発達を奨励し産業の発達を寄与することになる。

i. 生物自体：動物、植物、または微生物自体

ii. 生物の構成要素：細胞、DNA・遺伝子等,
iii. 生物利用で得られる非生物：発酵生産物、組換え蛋白質、モノクローナル抗体
iv. 生物を利用する方法：発酵方法、動物・植物の育種方法、形質転換方法、微生物利用の環境浄化方法等

上記バイオテクノロジーの成果の知的所有権的保護のうち、最も重要なものは、一つは、歴史的に各国独自の保護制度を有する、動物・植物等生物自体の保護の問題であり、いま一つは、ニューバイオテクノロジーの成果である遺伝子関連発明や抗体医薬、幹細胞関連発明の保護の一般的問題である。したがって、以下これらの保護の問題に重点を置いて説明し、必要に応じその他の保護の問題についても触れることとする。

3. 生物自体の保護

人間が新しく作出した生物そのものの保護の歴史は、1900年のメンデル遺伝法則の再発見に巻き込むことができる。この遺伝法則の再発見により植物の育種技術が革命的に変化し、科学的育種が開始され、官民の育種により幾多の優秀な植物品種の作出が始まったからである。したがって、生物自体の保護は先ず、次に述べる植物品種の保護から始まった。

すなわち植物品種保護に関しては、欧州では、1904年には早くもフランスの果実栽培学会で植物製品の保護の要請が行われ、同年英国では、英国王立園芸協会による優良品種の表彰制度が開始された。そして1930年代から1940年代にかけてドイツ、フランス、イタリアおよびベルギー等が通常の特許法による植物品種の特許を開始した。一方、米国でも1900年代初頭から育種家、園芸業者、学者等の間で、植物品種に保護に対する要望が高まり、1930年に特許法中に植物特許に関する特別規定を導入し、無性繁殖植物の品種の特許を始めた。以後、後述するように現在に至るまで、欧州と米国、さらに日本等も含め、国別にかなり異なった植物保護の歴史を辿り、その保護の状況も国別に相違する。そして、特に遺伝子工学で代表されるニューバイオテクノロジーが植物の育種にも応用可能となるにつれ、植物品種に限定されない包括的植物の特許が米・欧・日等で現実の問題となっている。

動物保護に関しては、制度的な保護の歴史は植物に比較して遙に新しく、動物品種保護に関しては、僅かに、ルーマニアにおける1986年以降の、特許法の特別規定による少数の動物品種特許の認可やハンガリーにおける同様の動物品種特許規定の導入等が
知られているのみである。そして、品種に限定されない動物の特許が日本、オーストラリア、ニュージーランド等で一般特許法により認められ始めたのは、米国で動物特許第1号が認められた1988年以降のことである。

また、微生物保護に関しては、イギリスが1960年頃から微生物の特許を認めていたが、微生物自体の特許付与が先進国の大勢となったのは、米国最高裁が、微生物自体の特許を認めた1980年頃以降である。

このように、生物自体の保護は、欧州、米国、日本その他の国毎にその保護の歴史や保護の現状が相違するので、以下、それらの国別にその保護の歴史と現状を説明する。

3-1. 欧州における生物自体の保護

3-1-1. 欧州における植物自体の保護とUPOV条約

(1) 欧州における植物品種保護とUPOV条約
i. 1930年代〜1961年のUPOV条約署名までの動向

上述のように、欧州においては、1930年代から1940年にかけてドイツ、フランス、イタリアおよびベルギー等の一部の国において、通常の特許法による植物品種の特許が開始されたが、これらの試みは結果としては有効に機能しなかった。

その本質的理由は、オールドバイオテクノロジーで作出された植物品種が、他の機械、化学、電気等の工業的発明におけると同等な、再現可能な技術開示をし、また、客観的かつ有効な権利範囲を明示することが困難であったことにある。そして、他の大きな理由として、少なくとも1970年代頃までは、生物自体の発明の反復可能性の要件は、その生物の増殖過程の反復可能性では満たされず、育種過程の反復可能性がなければならないとする説（以下、“育種過程の反復可能性必須説”という）が欧州、特にドイツの学者の中で最有力説であったことも挙げられよう（第1図参照）。もっとも、育種過程の反復可能性、すなわち、創成過程の反復可能性は無性物には技術的、工業的に利用しうる発明として必須であるが、無生物にない自己増殖能力を有する生物自体の発明において同様の要件を必须とするのは不要であり、増殖可能性があれば生物の特許性は認めても良いとする説（以下、“増殖可能性の反復可能性容認説”という）もドイツの学者等によって唱えられていた。
その発明の反復可能性の考え方を端的に判示した判決の一つが、1953年スイス連邦裁判所がなした“赤バラ事件”における判決である。この判決は、多元交配によって育成された新規な赤バラのクレームに対し、本件赤バラの育種段階を反復するためには最小限2億6千9百万の変異植物個体を同時に得なければならず、現実的にその育種段階に反復可能性がなく、したがって、技術的に、工業的に利用し得る発明ではないとして特許性を否定している。そして、この判決は本件は育種段階に発明があるのであるから、本件新規な赤バラを増殖する段階で再生産可能であるとしても、本件発明の特許性を認めるとはできない旨判示している。

一方、1930年初頭からAIPPI（国際工業所有権保護協会）が、また、1940年代末頃からASSINSEL（国際植物品種育成者保護協会）が、当初は、工業所有権の保護に関するパリ条約の枠内における国際的な育成権保護を求める運動を展開したが不成功に終わった。このような情勢下でASSINSELは方向転換し、1956年フランス政府に育成者権保護を検討するための国際会議開催の働きかけを行った。そして、1957年パリで新植物の成果物の保護に関する国際会議が開催され、1961年に工芸所有権の保護に関するパリ条約とは独立のUPOV条約が署名されるに至った。
ii. 1961年UPOV条約署名以降

ii-1. 1968年UPOV条約発効

1961年に署名されたUPOV条約は、1968年に発効したが、1970年代までは加盟国が主としてEC諸国に限られ、地域条約的な色彩が強かった。

ii-2. 1973年欧州特許条約署名、1978年発効

1973年署名された欧州特許条約（以下、EPCという）の第53条（b）には、“植物又は動物品種および植物又は動物の生産のための本質的に生物学的方法”は、不特許する旨の規定が置かれている。これは、1973年には、UPOV条約加盟国となっているECの主要国のいくつかが既にUPOV条約の規定に基づく植物品種保護のための特別法を制定したことを反映している。

ii-3. 1978年のUPOV条約の改正

1978年に欧州以外の国の加入を促進するため条約を改正が行われ、その後、イスラエル、米国、日本、豪州、東欧諸国等が順次加盟し文字どおり国際条約としての実体を備えるに至った（第1表参照）。

なお、2000年9月24日現在、UPOV条約加盟国は46ヶ国となっている。

そして、加盟各国は、一部の例外を除いて特許法とは別の、いわゆる品種保護法を制定して植物品種の保護を行っており、少なくとも伝統的育種法によって育成された植物品種の保護制度としては、このUPOV条約に基づく制度が欧州のみならず世界の大勢となった。
MEMBERS OF THE INTERNATIONAL UNION FOR THE PROTECTION OF NEW VARIETIES OF PLANTS

International Convention for the Protection of New Varieties of Plants

Status on October 22, 2009

<table>
<thead>
<tr>
<th>State/Organization</th>
<th>Date on which State/Organization became member of UPOV</th>
<th>Number of contribution units</th>
<th>Latest Act of the Convention to which State/Organization is party and date on which State/Organization became party to that Act</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albania</td>
<td>October 15, 2005</td>
<td>0.2</td>
<td>1991 Act... October 15, 2005</td>
</tr>
<tr>
<td>Argentina</td>
<td>December 25, 1994</td>
<td>0.5</td>
<td>1978 Act... December 25, 1994</td>
</tr>
<tr>
<td>Austria</td>
<td>March 1, 1989</td>
<td>1.0</td>
<td>1991 Act... January 20, 2000</td>
</tr>
<tr>
<td>Austria</td>
<td>July 1, 1994</td>
<td>0.75</td>
<td>1991 Act... July 1, 2000</td>
</tr>
<tr>
<td>Azerbaijan</td>
<td>December 9, 2004</td>
<td>0.2</td>
<td>1991 Act... December 9, 2004</td>
</tr>
<tr>
<td>Belarus</td>
<td>January 5, 2003</td>
<td>0.2</td>
<td>1991 Act... January 5, 2003</td>
</tr>
<tr>
<td>Belgium</td>
<td>December 5, 1976</td>
<td>1.5</td>
<td>1961 Act/1972 Act... December 5, 1976</td>
</tr>
<tr>
<td>Bolivia (Plurinational State of)</td>
<td>May 21, 1999</td>
<td>0.2</td>
<td>1978 Act... May 21, 1999</td>
</tr>
<tr>
<td>Brazil</td>
<td>May 23, 1999</td>
<td>0.25</td>
<td>1978 Act... May 23, 1999</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>April 24, 1998</td>
<td>0.2</td>
<td>1991 Act... April 24, 1998</td>
</tr>
<tr>
<td>Canada</td>
<td>March 4, 1991</td>
<td>1.0</td>
<td>1978 Act... March 4, 1991</td>
</tr>
<tr>
<td>Chile</td>
<td>January 5, 1996</td>
<td>0.2</td>
<td>1978 Act... January 5, 1999</td>
</tr>
<tr>
<td>China</td>
<td>April 23, 1999</td>
<td>0.5</td>
<td>1978 Act... April 23, 1999</td>
</tr>
<tr>
<td>Colombia</td>
<td>September 13, 1996</td>
<td>0.2</td>
<td>1978 Act... September 13, 1996</td>
</tr>
<tr>
<td>Costa Rica</td>
<td>January 12, 2009</td>
<td>0.2</td>
<td>1991 Act... January 12, 2009</td>
</tr>
<tr>
<td>Croatia</td>
<td>September 1, 2001</td>
<td>0.2</td>
<td>1991 Act... September 1, 2001</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>January 1, 1993</td>
<td>0.5</td>
<td>1991 Act... November 24, 2002</td>
</tr>
<tr>
<td>Denmark</td>
<td>October 6, 1968</td>
<td>1.5</td>
<td>1991 Act... April 24, 1998</td>
</tr>
<tr>
<td>Democratic Republic</td>
<td>June 16, 2007</td>
<td>0.2</td>
<td>1991 Act... June 16, 2007</td>
</tr>
<tr>
<td>Ecuador</td>
<td>August 8, 1997</td>
<td>0.2</td>
<td>1978 Act... August 8, 1997</td>
</tr>
<tr>
<td>Estonia</td>
<td>September 24, 2000</td>
<td>0.2</td>
<td>1991 Act... September 24, 2000</td>
</tr>
<tr>
<td>European Community</td>
<td>July 29, 2005</td>
<td>5.0</td>
<td>1991 Act... July 29, 2005</td>
</tr>
<tr>
<td>Finland</td>
<td>April 16, 1993</td>
<td>1.0</td>
<td>1991 Act... July 20, 2001</td>
</tr>
<tr>
<td>France</td>
<td>October 3, 1971</td>
<td>5.0</td>
<td>1991 Act... March 17, 1983</td>
</tr>
<tr>
<td>Georgia</td>
<td>November 29, 2005</td>
<td>0.2</td>
<td>1991 Act... November 29, 2008</td>
</tr>
<tr>
<td>Germany</td>
<td>August 10, 1968</td>
<td>5.0</td>
<td>1991 Act... July 25, 1998</td>
</tr>
<tr>
<td>Hungary</td>
<td>April 13, 1983</td>
<td>0.5</td>
<td>1991 Act... January 1, 2003</td>
</tr>
<tr>
<td>Ireland</td>
<td>May 3, 2006</td>
<td>0.2</td>
<td>1991 Act... May 3, 2006</td>
</tr>
<tr>
<td>Israel</td>
<td>November 8, 1981</td>
<td>1.0</td>
<td>1978 Act... November 8, 1981</td>
</tr>
<tr>
<td>Italy</td>
<td>December 12, 1979</td>
<td>0.5</td>
<td>1991 Act... April 24, 1998</td>
</tr>
<tr>
<td>Italy</td>
<td>July 1, 1977</td>
<td>2.0</td>
<td>1978 Act... May 28, 1986</td>
</tr>
<tr>
<td>Japan</td>
<td>September 3, 1982</td>
<td>5.0</td>
<td>1991 Act... December 24, 1998</td>
</tr>
<tr>
<td>Jordan</td>
<td>October 24, 2004</td>
<td>0.2</td>
<td>1991 Act... October 24, 2004</td>
</tr>
<tr>
<td>Kenya</td>
<td>May 13, 1999</td>
<td>0.2</td>
<td>1978 Act... May 13, 1999</td>
</tr>
<tr>
<td>Kyrgyzstan</td>
<td>June 26, 2000</td>
<td>0.2</td>
<td>1991 Act... June 26, 2000</td>
</tr>
<tr>
<td>Latvia</td>
<td>August 30, 2002</td>
<td>0.2</td>
<td>1991 Act... August 30, 2002</td>
</tr>
<tr>
<td>Lithuania</td>
<td>December 10, 2003</td>
<td>0.2</td>
<td>1991 Act... December 10, 2003</td>
</tr>
<tr>
<td>Mexico</td>
<td>August 9, 1997</td>
<td>0.75</td>
<td>1978 Act... August 9, 1997</td>
</tr>
<tr>
<td>Morocco</td>
<td>October 8, 2006</td>
<td>0.2</td>
<td>1991 Act... October 8, 2006</td>
</tr>
<tr>
<td>Netherlands</td>
<td>August 10, 1968</td>
<td>3.0</td>
<td>1991 Act... April 24, 1998</td>
</tr>
<tr>
<td>New Zealand</td>
<td>November 8, 1981</td>
<td>1.0</td>
<td>1978 Act... November 8, 1981</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>September 6, 2001</td>
<td>0.2</td>
<td>1978 Act... September 6, 2001</td>
</tr>
<tr>
<td>Norway</td>
<td>September 13, 1993</td>
<td>1.0</td>
<td>1978 Act... September 13, 1993</td>
</tr>
<tr>
<td>Oman</td>
<td>November 22, 2009</td>
<td>1.0</td>
<td>1991 Act... November 22, 2009</td>
</tr>
<tr>
<td>Panama</td>
<td>May 23, 1999</td>
<td>0.2</td>
<td>1978 Act... May 23, 1999</td>
</tr>
<tr>
<td>Paraguay</td>
<td>February 8, 1997</td>
<td>0.2</td>
<td>1978 Act... February 8, 1997</td>
</tr>
<tr>
<td>Poland</td>
<td>November 11, 1989</td>
<td>0.5</td>
<td>1991 Act... August 15, 2003</td>
</tr>
<tr>
<td>Portugal</td>
<td>October 14, 1995</td>
<td>0.2</td>
<td>1978 Act... October 14, 1995</td>
</tr>
<tr>
<td>Republie of Korea</td>
<td>January 7, 2002</td>
<td>0.75</td>
<td>1991 Act... January 7, 2002</td>
</tr>
<tr>
<td>Republic of Moldova</td>
<td>October 28, 1998</td>
<td>0.2</td>
<td>1991 Act... October 28, 1998</td>
</tr>
<tr>
<td>Romania</td>
<td>March 16, 2001</td>
<td>0.2</td>
<td>1991 Act... March 16, 2001</td>
</tr>
<tr>
<td>Russian Federation</td>
<td>April 24, 1998</td>
<td>0.5</td>
<td>1991 Act... April 24, 1998</td>
</tr>
<tr>
<td>Singapore</td>
<td>July 30, 2004</td>
<td>0.2</td>
<td>1991 Act... July 30, 2004</td>
</tr>
</tbody>
</table>

-6-
MEMBERS OF THE INTERNATIONAL UNION FOR THE PROTECTION OF
NEW VARIETIES OF PLANTS
International Convention for the Protection of New Varieties of Plants

(continued)

<table>
<thead>
<tr>
<th>State/Organization</th>
<th>Date on which State/Organization became member of UPOV</th>
<th>Number of contribution units</th>
<th>Latest Act of the Convention to which State/Organization became party and date on which State/Organization became party to that Act</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slovakia</td>
<td>January 1, 1993</td>
<td>0.5</td>
<td>1991 Act, January 1, 1993, June 12, 2009</td>
</tr>
<tr>
<td>Slovenia</td>
<td>July 29, 1999</td>
<td>0.2</td>
<td>1991 Act, July 29, 1999</td>
</tr>
<tr>
<td>South Africa</td>
<td>November 6, 1977</td>
<td>1.0</td>
<td>1978 Act, November 6, 1977</td>
</tr>
<tr>
<td>Spain</td>
<td>May 18, 1980</td>
<td>2.0</td>
<td>1991 Act, May 18, 1980</td>
</tr>
<tr>
<td>Sweden</td>
<td>December 17, 1971</td>
<td>1.5</td>
<td>1991 Act, April 24, 1998</td>
</tr>
<tr>
<td>Switzerland</td>
<td>July 10, 1977</td>
<td>1.5</td>
<td>1991 Act, September 1, 2008</td>
</tr>
<tr>
<td>Trinidad and Tobago</td>
<td>January 30, 1998</td>
<td>0.2</td>
<td>1978 Act, January 30, 1998</td>
</tr>
<tr>
<td>Tunisia</td>
<td>August 31, 2003</td>
<td>0.2</td>
<td>1991 Act, August 31, 2003</td>
</tr>
<tr>
<td>Turkey</td>
<td>November 18, 2007</td>
<td>0.5</td>
<td>1991 Act, November 18, 2007</td>
</tr>
<tr>
<td>Ukraine</td>
<td>November 3, 1995</td>
<td>0.2</td>
<td>1991 Act, January 19, 1995</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>August 10, 1968</td>
<td>2.0</td>
<td>1991 Act, January 3, 1999</td>
</tr>
<tr>
<td>Uruguay</td>
<td>November 13, 1994</td>
<td>0.2</td>
<td>1978 Act, November 13, 1994</td>
</tr>
<tr>
<td>Uzbekistan</td>
<td>November 14, 2004</td>
<td>0.2</td>
<td>1991 Act, November 14, 2004</td>
</tr>
<tr>
<td>Viet Nam</td>
<td>December 24, 2006</td>
<td>0.2</td>
<td>1991 Act, December 24, 2006</td>
</tr>
</tbody>
</table>

(Total: 68)

1 The International Union for the Protection of New Varieties of Plants (UPOV), established by the International Convention for the Protection of New Varieties of Plants, is an independent intergovernmental organization having legal personality. Pursuant to an agreement concluded between the World Intellectual Property Organization (WIPO) and UPOV, the Director General of WIPO is the Secretary-General of UPOV and WIPO provides administrative services to UPOV.

3 With a notification under Article 34(2) of the 1978 Act.

4 With a declaration that the 1978 Act is not applicable to the Hong Kong Special Administrative Region.

5 With a declaration that the 1961 Act, the Additional Act of 1972, the 1978 Act and the 1991 Act are not applicable to Greenland and the Faroe Islands.

6 With a declaration that the 1978 Act applies to the territory of the French Republic, including the Overseas Departments and Territories.

7 Ratification for the Kingdom in Europe.

8 With a reservation pursuant to Article 35(2) of the 1991 Act.

* * *
次に 1978 年改正UPOV条約の概要を述べると共に、一般特許法による発明の特許との大きな相違点についても触れる。

◎ 1978 年改正UPOV条約の概要

(a) 目的

育成者の権利を本条約の規定に基づき保護することにある。

(b) 保護対象

(b) -1. 保護対象は植物品種である。

なお、1978年改正UPOV条約では品種に関する定義はないが、1991年改正UPOV条約の定義と同様、最下位の既知の単一の植物学上の分類の中の植物集合であって、遺伝子型又は特性によって特定され、区別性、安定性等を有するものを意味すると解される。そして、通常は最下位の既知の単一の植物学上の分類は、種であるから、品種の分類学上の位置付けを図示すれば第2図のようなになる。

第2図 動植物品種の分類上の位置付け
したがって、このUPOV条約では、“〇〇遺伝子を導入した△△の性質を有する双子植物”のような包括的植物は保護されない。
そして、UPOV条約では、品種の成立に係る変異が人為的変異であるか、自然的変異であるかを問わないとされている。そして、特許法は発明のみを保護（特許）対象としているので、枝変わり等の自然突然変異に基づく品種や、在来種から選抜して育成した品種等は発見であって特許できないという議論があるが、UPOV条約ではこれらは問題なく保護される。
(b) 保護対象とされる植物の種類
同盟国はできる限り多くの種類の植物を保護すべきこととされ、所定期限内に最低限保護すべき種類の植物の数についても規定されている。
(c) 保護方式
特別法又は特許法により保護することができる。ただし、同一種類の植物の保護は一方式のみでないといえない（いわゆる二重保護の禁止、2条1項、例外規定37条）。
なお、イタリー、ハンガリー等の一部の加盟国は、UPOV条約に基づく育成者権の保護を、既存の特許法中にこのUPOV条約の規定に合致した特別規定を導入することにより行っている。したがって、このようなUPOV条約に基づく植物品種の特許は、その保護対象及び態様において、一般特許法による植物の特許とは著しく相違するものがあることに留意すべきである。
(d) 権利内容
(d)-1. 基本的権利
① 種苗としての販売又は販売を目的とする種苗の生産に関する独占権
したがって、育成者権は、主として種苗業者の生産・販売活動にのみ及び権利であって、農家の生産・販売活動等には権利は及ばない。
② 観賞用植物に関して①の権利以外の権利を認める例外規定がある。
③ 登録品種を他の品種の育成素材として使用することには権利は及ばない。ただし、登録品種を他の品種（F₁品種）植物の商業的生産のために反復使用する場合には権利が及ぶ。
（d）-2. 付加的権利

上記、基本的権利以外の権利（例えば、切り花等の消費者用の産物に及ぶ権利）を付与できる。

（e）保護要件

① 区別性
出願時における公知品種と1以上の重要な特性で区別されること

② 出願前未販売
出願前、当該品種が育成者の同意のもとに販売されていないこと等この要件は、一般特許法の新規性の要件に対応する。しかし、一般特許法では当該発明が刊行物に記載され、公に用いられ、或いは公に知られた場合、新規性が喪失するが、UPOV条約に基づく品種保護制度では、そのような事実によっては登録性は失われない点で大きく相違する。

③ 均一性
当該品種が十分な均一性を有するものであること

④ 安定性
当該品種の特性が、反復増殖した後も維持されること

（f）審査方式…原則として実地審査（審査当局自身が行う栽培試験、現地調査等）を必須とする。

（g）保護期間…15年以上（樹木等18年以上）

（h）無効・消滅
無効…権利付与の際、保護要件が満たしていなかったことが判明したとき消滅…登録後、種苗を当局に提出しない場合等において、品種登録を消滅させることができる。

この消滅の規定は、一般特許法にはない独特の規定である。

（i）内国民待遇及び優先権の規定

UPOV条約には、工業所有権の保護に関するパリ条約と類似の、内国民待遇及び優先権の規定が置かれている。
その後の植物分野におけるニューバイオテクノロジーの進展に対応するため、育成者権の飛躍的に拡大・強化した改正UPOV条約が1991年署名され、1998年発効した。

◎ 1991年改正UPOV条約の主要な改正点

（a）保護対象植物の拡大
1978年改正UPOV条約では、同盟国はできる限り多くの種類の植物を保護すべきこととされていた（最低数の種類の植物の保護を義務付けていた）のを、本改正条約では、あらゆる種類の植物についての保護を義務付けた。

（b）二重保護禁止規定の削除
本条約では、1978年改正UPOV条約の二重保護禁止規定が削除され、保護方式は各国に委ねられることとなった。

（c）育成者権の範囲の拡大
1978年改正UPOV条約では、育成者権が及ぶのは原則として種苗の販売及び種苗の販売のための生産であるが、本条約では、種苗の増殖、販売、輸出入、貯蔵等にも育成者権が及ぶこととされた。
また、本条約では、種苗段階で権利行使できなかった場合には収穫物に効力が及ぶこととされ、収穫物段階で権利行使できなかった場合には、直接的な加工品に効力が及ぶこととしてもよい（各国に委ねる）こととされた。

（d）仮保護制度の導入
出願から登録までの間の権利を保護するための仮保護について、1978年改正UPOV条約では任意であったのが、本条約では義務付けられた。

（e）従属関係の導入
登録品種に本質的に由来する品種（登録品種のわずかな形質のみを変更した品種）に対し、当該登録品種の効力が及ぶこととする従属関係を導入した。

（f）農家の自家採種に関する育成者権の任意的例外導入
加盟国は、合理的範囲内において、かつ育成者の正当な利益を保証することを条件に、農家が保護品種を自己の経営地の中で栽培して得た収穫物を、自己の経営地において繁殖の目的で利用することができるよう、育成者権
を制限できる。

ii-5. 1995年の共同体植物品種規則の成立

1995年にUPOV条約に基づく共同体植物品種規則が発効した。この規則により取得した育成者権は欧州共同体全域にわたって効力を有する。

（2）欧州における包括的植物の特許

i. EPOの包括的植物の特許性を肯定する審決の背景

上記のように、植物の保護に関しては、UPOV条約に基づく植物品種の保護制度が存在し、さらに、1991年改正UPOV条約では、遺伝子工学等のニューバイオテクノロジーの進展に対応した育成者権の拡大・強化も行われた。しかし、このUPOV条約の保護対象はあくまでも品種に限定されるため、品種の要件を具備しない非品種植物や、特に遺伝子工学等で作出される品種の枠を逸れた昆虫耐性植物、除草剤耐性植物等の包括的植物の発明を有効に保護できないという問題があった。

さらに、包括的植物の特許が現実的なものとして考えられるようになった、法律的、技術的及び経済的背景として、次の点を挙げることができる。すなわち、

（a）EPOにおける、“増殖過程の反復可能性容認説”的採用

欧州において、3-1-3.2及び3で述べるように微生物自体の反復可能性に関しては、寄託による増殖過程の反復可能性で代替できるとする運用になってきている。そして、この運用を植物自体の発明の反復可能性にも準用することにより、当該植物の反復可能性を、当該植物の種子や形質転換細胞の寄託による増殖過程の反復可能性により認めることが可能となった。

（b）遺伝子工学等のニューバイオテクノロジーによって育成された植物の特質

人工交配等の伝統的育種法で育成された植物は、反復可能性を含む開示要件や、進歩性等の特許要件を満たし難い場合が多かったが、これと比較して、遺伝子工学で育成された植物は、格段にこれらの要件を満たし易くなった。
遺伝子工学等のニューバイオテクノロジーによる植物の育成の莫大な投資費用回収の必要性

遺伝子工学等のニューバイオテクノロジーによる植物の育成には、莫大な研究・開発投資が必要であり、その成果に対し個々の品種に限定される狭い権利しか付与されないのでは、投資費用が十分に回収できない。

このような状況を反映して、EPOではEPC第53条(b)の植物品種不特許の規定にもかかわらず、下記のように包括的植物の特許性を認める審決がなされ、また、EUバイオ指令でこのような包括的植物の特許性を認める規定がなされるに至ったのである。

ii. EPCの下で非品種植物の特許性を肯定した審決

欧州特許条約の下で植物の特許を最初に認めたのが、1983年の欧州特許庁審判部の増殖材料／CIBA-GEIGY事件に関する審決である。

本件は化学剤により処理された繁殖材料、種子のクレームを含むものであり、審査官はこれらクレームは53条(b)で特許性の例外とされている植物品種をクレームしたものであるという理由等で拒絶した。これに対し、審判部は53条(b)で特許から排除しているのは、1961年のUPOV条約に定義された区別性、均一性及び安定性の要件を備えた植物品種のみであって、本件のクレームにおけるような、特定の個々の植物品種ではなく化学的に処理された任意の栽培植物まで排除するものではないとしてその特許性を認めた。そしてこの後この審決は、例えば遺伝子工学的方法によって創成された、植物品種に限定されない包括的植物が53条(b)にかかわらず特許性があるとする説の有力な根拠として、しばしば引用されることとなった。

さらに、欧州特許庁審判部は、1988年の雑種植物／LUBRIZOL事件において、それが安定性のような品種の要件を欠く植物であれば特許され得ること、また、古典的な交配による育成方法であっても、人為的に特定の工程の組み合わせをして高収量をもたらすなど、自然界で起こり得ない技術的特徴のあるものとした場合には、本質的に生物学的な方法に当たらず特許され得ることを示す審決を下した。
iii. EPCの下で包括的動物の特許性を肯定した審決…包括的植物の特許性の肯定につながる

1992年に動物に対する初めての欧州特許（オンコマウス特許）が成立した。
その経緯は次の通りである。すなわち、欧州特許庁審査部は、欧州特許条約第53条（b）は、動物品種のみでなく、動物一般の特許を排除しており、本件の腫瘍遺伝子を含む発癌性の高い非ヒト哺乳動物を対象とするクレームはこの規定に違反している等の理由で上記クレームを含む出願を拒絶査定した。これに対し、審判部は、第53条（b）が特許を排除しているのは動物品種のみであるとして、この拒絶査定を取消し本件を審査部に差し戻した。審査部は再審査において、本件の非ヒト哺乳動物は種よりも遙に高い分類クラスを形成するものであり、種のサブクラスである動物品種に当たらないから第53条（b）の不特許事由に該当しない等の理由により、その特許を認めたものである。

そして、このEPOの“非ヒト哺乳動物は種よりも遙に高い分類クラスを形成するものであり、種のサブクラスである動物品種に当たらないから第53条（b）の不特許事由に該当しない”という論理はそのまま植物品種よりも分類学的に上位の包括的植物の特許性の肯定に援用できることは明らかである。

上記のような審決の考え方にしたがって、EPOの審査部は現実に、外来遺伝子で形質転換されたトランスジェニック植物等の、品種に限定されず植物分類体系の高レベル例えば種・属などを対象とする包括的植物に特許を付与しはじめた。

また、EPOのこれらの審決に対応して、ドイツ特許庁でも、細胞融合によって育成された雑種植物、トランスジェニック植物等に対していくつかの特許を付与することを始めた。

1995年2月のEPO審判部が下したPGS審決T356/93により上記の状況に停滞が生じた。

iv. 1998年7月6日EUバイオ指令採択、同年7月30日発行後の欧州におけるEU加盟国の包括的植物の特許の開始乃至再開

長い懸案であったバイオテクノロジー発明の法的保護に関するEU指令
（以下、「EUバイオ指令」という）が、1998年欧州議会で採択され、1998年7月30日に発効した。EU加盟国は、上記発行日から2年以内（2000年7月30日まで）に必要な国内特許法の改正等を行って、このEUバイオ指令の内容を実施しなければならないこととなった。

このEUバイオ指令4条2項には、包括的植物の特許性を認める下記のような規定が置かれている。

“第4条
1. 下記のものは特許性がないものとする。
 (a) 植物又は動物の品種。
 (b) …省略…。
2. 植物又は動物に関する発明は、その発明の技術的実施可能性が特定の植物又は動物の品種に限らなければならない。特許性を有するものとする。”

そして、PGS審決におけるような、特定の遺伝子によって特徴付けられる包括的植物は、このEUバイオ指令の規定により特許性を肯定された植物に該当する。

また、上述のようにEU加盟国は、2000年7月30日までに必要な国内特許法の改正等を行って、このEUバイオ指令の内容を実施しなければならないことになっているので、当然、EU加盟国の国内法では、上記のような包括的植物の特許性が認められることになる。
（注）オランダ、フランス、イタリーは欧州裁判所にEUバイオ指令の無効を求めて提訴した。欧州裁判所は2001年10月に当該訴えを棄却した。

v. EPC規則改正及びNovartis事件拡大審判部の意見によるEPOの包括的植物の特許再開

1999年6月EPC施行規則が改正され、EUバイオ指令4条2項と同一内容の規定が23c(b)に導入され、この改正規則は1999年9月16日に発効した。

ついで、1999年12月拡大審判部はペンディングであったNovartis事件G1/98に関し「特定の植物品種が個々にクレームされていないクレームは、そ
れが植物品種を包含する場合でも、ＥＰＣ５３条（ｂ）にしたがい特許を除外されることはないと明確な結論を出した。

このような、情勢の変化を受けてＥＰＯは、ＰＧＳ審決以来ストップしていた包括的植物のクレームを含む出願の審査を再開し、特許を付与することを再開した。

vi. 本質的に生物学的方法

非微生物学的方法による植物の生産であって、その工程に植物の交配及び選抜からなる方法は、当該工程がヒトの介在なしに起こりうる現象を反映したに過ぎない場合は、本質的に生物学的方法か、（２）非微生物学的方法による植物の生産であって、その工程に植物の交配及び選抜を含む方法は、他の技術的な特徴を有するという理由で、本質的に生物学的方法ではないとなることができるか、（３）特許対象から除外されていないもののと、除外されている非微生物学的方法を区別する基準は何か、等の問題が、現在２件の審判事件から付託され、拡大審判部が検討を行っている。

3-1-2. 　欧州における動物自体の保護

（1）1992年ＥＰＯの動物特許第１号付与以前の状況

欧米において動物自体の特許が現実に問題とされるようになったのは、遺伝子操作等のニューバイオテクノロジーが動物の育種に適用可能となって以来のことである。

これは、オールドバイオテクノロジー、すなわち、人工交配等の伝統的育種法によって作出された動物品種が、植物品種以上に、技術的に特許保護に本質的になじみがたい面が多かった（注）こと、植物品種の場合と比較し得るような、育成者等による保護を求める活発な動きが見られなかったこと等に起因するものと考えられる。

（注）実用的な植物の多くが自家受精植物または無性繁殖植物であって、品種
を知的所有権的に保護するための重要な要件である、品種の3要件、すなわち、区別性、均一性および安定性を満たすレベルが高いのに対し、動物は他家受精であるため、品種の3要件を満たすレベルが相対的に低い。

もっとも、1969年に西ドイツ連邦最高裁判所が、赤い鳩事件において、生物に関する発明であっても特許の対象となり得る旨の判断を示した。しかし、現実にはこの判決は、本件発明の赤い羽の鳩を育成する方法が、その出発品種から交配・淘汰のプロセスを経て最終産物である赤い羽の鳩を育成する方法（育種過程ないし創成過程）の反復可能性を欠いているという理由で特許性を否定した。そして、当時の交配等によるオールドバイオテクノロジーによる動植物品種の育成方法においては、その育種過程に判断にいうような反復可能性が無い場合がほとんどであったから、この赤い鳩判決は理論的には動物を含む生物に関する発明が特許の対象になることを認めたものであったが、現実的にはその特許の可能性を否定したに等しいものであった。

また、UPOV条約においても、かなり以前に、動物の保護が検討課題となっていることが伝えられたことがあるが、その後具体的な動きは全く見られない。

ただし、特異な例として、ルーマニアおよびハンガリーには植物品種と同様に動物品種を特許法の特別規定により保護する制度が存在し、ルーマニアにおいては、幾つかのオールドバイオテクノロジーにより育成された動物品種の特許例がある。

ところが、遺伝子工学等のニューバイオテクノロジーによる動物の育種が実用可能となると、このようなオールドバイオテクノロジー時代における状況は全く一変し、技術的にも十分特許保護になじむ発明が出現するようになり、また、それにより作出された実験用のトランスジェニック動物等に関する現実の保護のニーズも急速に高まっていった。

このような実情を背景に、1988年米国において動物特許第1号が認められ、これが世界的に大きな衝撃を与えた。そして、日本、南アフリカ、ニュージーランド、オーストラリア等においても、幾つかの動物特許を認める事例がでてくるようになり、次にのべるように欧州においても、EPOが1992年動物特許第1号を認めた。
(2) 1992年EPOの動物特許第1号付与以降の状況

i. 1992年EPOにおける動物特許第1号（欧州特許第169672）の付与

EPOにおける上記動物特許認可の経緯は次の通りである。

すなわち、EPO審査部は、EPC第53条(b)は、動物品種のみでなく、動物一般の特許を排除しており、本件の腫瘍遺伝子を含む発癌性の高い非ヒト哺乳動物を対象とするクレームはこの規定に違反している等の理由で出願を拒絶査定した。なお、審査部はEPC第53条(a)の公序良俗の問題については、特許法はこの問題を取り扱う法律としては適当ではないとして、判断を避けた。

これに対し、審判部は次の理由で本件を審査部に差し戻した。

(a) EPC第53条(a)が、本件発明の特許性の障害となるか否かの決定は、主として動物の苦痛及び環境へのリスクと人類に対する本件発明の利益のバランスによる。そして、この点についても審査部で判断すべきである。

(b) EPC第53条(b)が特許を除外しているのは動物品種のみであるから、審査部がEPC第53条(b)が動物の特許を除外しているとの理由で本願を拒絶したのは誤りであり、本件動物が動物品種に当たるか否か判断すべきである。

これに対し、審査部は、審判部が再審査を命じた上記2点について次のようして判断し、本件発明を特許する決定をした。

(a) EPC第53条(a)の問題に関しては、本件は、三つの異なった利益、すなわち、“①広範囲に広がった危険な病気を治療するという人類への利益、②望ましくない遺伝子の無管理の分散から環境を保護する利益、および③動物への残虐な行為は避けるべきこと”が関与しており、そのバランスが必要である。そして、全体のバランスから本件発明が不道徳、或いは、公の秩序に反しているとは認められない。

(b) 本件の非ヒト哺乳動物は種よりも遠い分類クラスを形成するものであり、一方、動物品種は種のサブクラスである。したがって、本件非ヒト哺乳動物は、EPC第53条(b)で特許から除外された動物品種に該当しない。

この欧州特許第169672号に対し、公序良俗違反等の理由で多数の異議
申立がなされた。

当該異議決定には時間を要したが、異議部は2001年に“哺乳動物”を“ゲッ歯類動物”に訂正し、オンコマウス特許を維持する決定をした。

ii. EUバイオ指令及び改正EPC規則による動物特許の肯定

3-1-1. (2) iv, v で述べたように、1998年7月30日発効のEUバイオ指令第4条第2項及び1999年9月16日発効の改正EPC規則第23条c（b）に、いずれも品種に限定されない上位概念の包括的動物の特許性を認める規定が置かれた。

したがって、欧州のEPC加盟国、EPO、EU加盟国のいずれにおいても、今後、包括的動物は他の特許用件を満たす限り特許が認められることになった。

3-1-3. 欧州における微生物自体の保護

既にのべたように、微生物自体の保護に関しては、イギリスが1960年頃から微生物自体の特許を認めていたが、微生物自体の特許付与が先進国の大勢となったのは、米国最高裁が、微生物自体の特許を認めた1980年頃以降である。しかし、欧州においては、それ以前に微生物自体の発明の特許が認められるための、避けて通れない関門、すなわち、反復可能性に関する考え方、“育種過程の反復可能性必須説”から“増殖過程の反復可能性容認説”に移行する次のような一連の重要な経過があった。

(1) “育種過程の反復可能性必須説”に基づく西独最高裁決

1975年に西ドイツ連邦最高裁決所は、パン酵母事件において、前記赤い鳩判決を引用し、微生物学的方法及びその産物が生物であるという理由のみで特許性から排除されるものではないとして、微生物が特許対象となり得ることを判示した。しかし、この判決は同時に本件微生物の特許が認められるためには、本件微生物がその培養物から増殖可能であるだけでは特許性はなく、その出発材料の微生物から本件微生物を創成する方法に反復可能性（育種過程ないし創成過程の反復可能性）がなければならない旨を判示し、本件発明はその要件を欠いているとしてその特許性を否定
した。
そして、この判決は微生物自体が特許の対象となり得ることを初めて示したものではあったが、当時の新しい微生物の一般的な創出手段である、自然界からのスクリーニングや突然変異等の手段には、この判決で要求するような育種過程ないし創成過程の反復可能性がない場合が殆どであったから、このパン酵母判決の“育種過程の反復可能性必須説”にしたがう限り現実の微生物特許の道はきわめて厳しいものであった。

1978年の西ドイツ連邦最高裁判所の酢づけキャベツ事件の判決も、上記判決の“育種過程の反復可能性必須説”を踏襲するものであった。しかし、本件の新規微生物 Lactobacillus bavarivus に関しては、その創成過程であるキャベツの漬物から本件微生物をスクリーニングする過程に反復可能性があることを立証できた（裁判所の要請によりキャベツの漬物から本件微生物を再度スクリーニングして、その反復可能性を立証した）ので、本件微生物の特許性が認められた。本件は、創成過程の反復可能性を証明できたむしろ特殊なケースと言えるであろう。

(2) EPOにおける、微生物自体の発明に関する増殖過程反復可能性容認

既に述べたように、生物自体の発明の特許が認められるための要件である反復可能性に関し、“育種過程の反復可能性必須説”以外に、当該生物の増殖過程に反復可能性があれば生物自体の特許性は認めて良いとする、“増殖可能性の反復可能性容認説”もドイツの学者等によって唱えられていた。

そして、欧州特許庁はその審査便覧において、1977年に発効した欧州特許条約第52条、第53条、第83条の解釈と取扱にあたって、微生物に向けられた出願の反復可能性についても増殖能力のあるサンプルの寄託で十分とするべきことを規定した（注）。これは明らかに上記後者の“増殖可能性の反復可能性容認説”に対応するものである。

(注) 欧州特許庁審査便覧 C-IV、3.6（1983年版）は、次のように規定している。

「3.6 微生物学的方法の場合、II、4.11 の反復性の要件に注意しなければならない。規則28の規定に基づき寄託される微生物に関しては、反復性は
サンプルが入手可能な点で保証されるので（規則 28（3））、微生物の生成のための方法を別途記述する必要はない。

（3）“増殖過程の反復可能性承認説”に基づく西独最高裁判決

西ドイツ連邦最高裁判所は 1987 年の狂犬病ビールス事件において、上記欧州特許庁の取扱いとのハーモナイズを主たる理由として従来の赤い鳩事件以下の判例とは 180 度異なる判決、すなわち、新しい微生物の特許性をその寄託サンプルの増殖可能性により認める画期的判決を行った。

◎判示事項：新規な微生物それ自体について特許保護を得るためには、新規育成物の反復可能性は、その微生物の増殖可能なサンプルの寄託と公開により代用できる。

この狂犬病判決は、欧州各国が、生物自体の特許を認める上での長年の足かせであった、“育種過程の反復可能性必須説”から明瞭に開放されたことを示すものと考えられる。そして、現実に欧州の各国内法においても、微生物は他の特許要件を満たす限り問題なく特許されるようになっている。

3-2. 米国における生物自体の保護

3-2-1. 米国における植物自体の保護

米国においては、生物自体の保護に関し、歴史的に欧州におけるような育種過程の反復可能性を必須とする議論はなく、したがって、1906 年頃から議会で検討が始まった植物品種の特許保護に関しても、専ら保護対象の植物品種が変化せずに反復生産できるか否か、すなわち、増殖可能性の反復可能性があるか否かのみが問題とされた。そして、植物特許制定当時、無性繁殖植物は増殖過程の反復可能性はあるが、種子で増える有性繁殖植物は確実な増殖過程の反復可能性はないと考えられた。したがって、1930 年に制定された植物特許法では、保護対象植物は無性繁殖植物に限定された。

しかし、1961 年UPOV条約が署名されたのに刺激されて、有性繁殖植物に関しても、無性繁殖植物に対すると同様の保護を求める声が高まり、また、当時は既に有性繁殖植物でも保護の対象となら得る程度の増殖過程の反復可能性、すな
わち、安定性があると認識されるようになっていたので、1970年有性繁殖植物の品種を対象とする植物品種保護法が制定されるに至った。

そして、米国は1981年に1978年改正UPOV条約に加盟している。

また、1980年に最高裁判所は“Diamond v. Chakrabarty”事件において、通常の特許（utility patent）による微生物の特許を認める画期的判決を下し、あらゆる種類の生物特許の可能性を示した。そして、植物に関しては、1985年のHibberd審決以来utility patentによる保護が行われるようになったが、技術的に、人工交配、選抜等の伝統的育種法で育成された植物品種については、植物特許法及び植物品種保護法による植物品種保護を、また、遺伝子工学で作出された包括的植物及び植物品種については、utility patentによる植物の保護を選択するのが大勢となっている。

(1) 1930年制定の植物特許法による無性繁殖植物の品種の特許

米国においては、1930年に世界で先駆けて特許法の特別規定（いわゆる植物特許法）により無性繁殖植物の品種に植物特許を付与することが始められた。

i. 植物特許の品種保護の概要
 (a) 特許対象
 塊茎植物及び野性植物を除く、栽培された枝がわり、突然変異、雑種及び新規に発見された苗木を含む、発明又は発見された無性繁殖植物の品種
 (b) クレーム
 当該品種の全植物体のみをカバーする単一のクレームのみが許容される。しかも、植物特許の権利範囲は、クレームに記載された文言で決まるのではなく、明細書に詳細に記載された品種植物と同一の植物にのみ権利が及ぶ。
 (c) 保護要件
 植物特許の規定では、utility patentと同じ要件が課されることになっているが、現実の審査では、進歩性は通常問題となっておらず、他の品種との区別性及び新規性があれば登録される。
（d）技術開示

明細書の記載が合理的に可能な程度に完全であれば、第 112 条（明細書）の規定に違反しない。この規定は、出願明細書の記載の最も基本的な要件である、実施可能要件（出願明細書には、クレームされた発明を当業者が実施可能な程度に記載しなければならないという要件）を緩和するものである（注）。

（注）4-1. 明細書における発明の技術開示参照。

(e) 寄託（5-1 参照）

（d）に述べたように、植物特許の明細書の記載では、実施可能要件が緩和されているので、通常の生物関連発明の特許出願において要求されるような寄託は不要である。

(f) 権利

当該品種植物の無性繁殖、及び無性繁殖された上記植物の販売及び使用の独占権。

(g) 農家の特権

規定なし。

(h) 権利期間

出願日から 20 年。

ii. 植物特許のクレーム側

① 植物特許第 6,314（きく植物 BRONZ CHARM 1988.9）

「明細書に記載し絵で示したとおりの、新規かつ区別性のあるきく植物であって、…平坦な頭状花序・装飾的な頭状花序のタイプ、ブロンズの周辺花色、成熟時直径 11cm に達する頭状花序…で特徴付けられるきく植物」

② 植物特許第 6,769（ダリア植物 MARGARET 1989.5）

「明細書に記載し絵で示したとおりの、新規かつ区別性のあるダリア植物 MARGARET」（注）

（注）（b）に述べたように、植物特許の権利範囲はクレームの記載の文言で決まるのではなくら、2 のクレーム例にアンダーラ
インで示したように、クレームされた植物品種の新規な特性等の記載を全く省略した書き方しばしば行われる。

(2) 1970年制定の植物品種保護法による保護

1970年には、植物品種保護法（P V P A）が制定され、有性繁殖植物の品種に対し、上記植物特許と類似した保護が付与されるようになった。

さらに、1994年に1991年改正UPOV条約に整合させるP V P Aの改正が行われた。

i. P V P Aによる品種保護の概要
 (a) 対象
 菌類及び細菌を除く、有性繁殖植物の新品種
 (b) クレーム なし
 (c) 保護要件
 品種の3要件（区別性、均一性、安定性）（3-1-1. 1 ii-1.
 ◎ 1978年改正UPOV条約の概要（e）参照）及び新規性（未販売等）
 (e) 技術開示
 特許制度で意味する追試可能な技術開示は不要
 (f) 寄託
 特許制度で意味する寄託（公的機関への寄託、分譲等）は不要
 (g) 権利
 登録品種及びそれに本質的に由来する品種の販売、販売申出、生産、輸入、輸出及びの雑種又はその他の品種の生産のための使用に関する独占権
 (h) 農家の特権
 農家の自家採種等に対する育成者権の制限
 (i) 権利期間
 証書発行から20年、樹木及びぶどうは25年
（3）米国におけるutility patentによる植物の特許の動向

1985年に特許商標庁（USPTO）審判部はHibberd事件において、天然に存在する品種に比較して遊離のトリプトファンの含有量の高いトウモロコシに関し、組織培養物のクレームが植物特許法の法域に入れ、その種子及び植物のクレームが植物品種保護の法域に入るとする理由等に基づく審査官の拒絶査定を破棄し、これらのクレームの特許性を肯定する審決を下した。これにより植物もutility patentの保護対象となること、utility patent、植物特許及び植物品種保護法による保護の三者間の保護の重複は問題とならないことが明らかになった。これ以降、utility patentによる多数の植物の特許、特にトランスジェニック植物の特許が認められている。

2001年12月に最高裁は、植物自体の特許の有効性をめぐる事件において、新たに開発された植物品種も101条の条件を満たし、PPA、PVPAにより101条の対象範囲が狭められることはないと判示した。植物自体も特許対象であることは確かになった。

i. Utility patentによる植物保護の概要

（a）特許対象

特許法第101条に規定する特許性ある発明又は発見

（b）クレーム

植物、種子、植物の部分（花、果実、花粉、…等）、植物細胞、組織培養物、遺伝子、ベクター等々、それらの生産方法、使用方法等を多面的にクレームできる。

（c）保護要件

有用性、新規性及び進歩性

（d）技術開示

実施可能要件、記載要件等を満たす完全な技術開示

（e）寄託

寄託なしでは技術開示が不十分な場合、寄託必須

（f）権利

生産、使用、販売等に関する独占権

（g）農家の特権に関する規定なし。
(h) 権利期間
出願日から 20 年

ii. 植物等に関する utility patent のクレーム例

(1) 特許第 5,491,080 のメインクレーム
「1. 二本鎖RNAを特異的に開裂する酵素活性を有するタンパク質をコードするDNA配列を植物の染色体に組み込み、そのDNA配列を植物細胞中で発現させることを含んでいるRNAウイルスに対する耐性を有する植物の生産方法。
3. 二本鎖RNAを特異的に開裂する酵素活性を有するタンパク質をコードする異種DNA配列がその染色体に組込まれ、その中で発現されるRNAウイルスに対する耐性を有する植物。」

(2) 特許第 4,812,599 号のクレーム
「1. 名称PHV78の近交系トウモロコシ
2. 請求項1の名称PHV78の近交系トウモロコシの植物又は植物群
3. 請求項2の植物の花粉
4. 請求項1の名称PHV78の近交系トウモロコシの一種又は種子群
5. 名称PHV78の近交系トウモロコシの表現型の生理学的及び形態学的特性を有する近交系トウモロコシ」

(4) 米国における植物の各保護制度の対比
i. 各制度の利用上の優位性

米国出願人は、保護の多面性及び権利範囲の広さ（遺伝子、細胞、植物の部分、方法、包括的植物から植物品種に至るまでの広範囲の植物の保護、PVPAにおける農家の特権に対応する規定はない）等の観点から、その保護要件を満たすものについては、最優先順位でutility patent の出願を行っている。

ただし、各制度の重複保護が可能なため、数は少ないがPVPAとの併用や植物特許との併用がある。その場合、utility patent と植物特許間では、同一主題（品種）に対するクレームが重複して特許されることはないが、一
方の特許のクレームされた主題が他方のクレームのクレームされた主題に対して自明である場合は、ターミナルディスクリーマーで両者の特許が認められる。

ii. 育種技術による棲み分け
伝統的育種法、すなわち、オールドバイオテクノロジーによって育成された植物については、その大多数がＰＶＰＡあるいは植物特許が利用されているが、遺伝子工学、すなわち、ニューバイオテクノロジーで育成された、トランスジェニック植物については、殆どutility patentが利用されている。

3-2-2. 米国における動物の保護
1987年にＰＴＯ審判部は、養殖カキ事件において本件発明の進歩性を否定して審査官の拒絶を支持したが、人工的に製造した倍数体カキが生物であるという理由で拒絶した審査官の判断は誤りであるとして、動物がutility patentの対象となることを示した。
そして、ＰＴＯは本審決の直後に、天然物及びヒト以外の動物を含む多細胞生物が特許対象となる旨の通達を出した。
1988年4月に動物特許第1号が認められた。そのメインクレームは、「全ての生殖細胞と体細胞が胚形成期に導入された組み換え活性化腫瘍遺伝子を有する、トランスジェニック非ヒト哺乳動物、及びその子孫」であった。これ以降多数の動物特許が認められている。またこの動物特許第1号のニュースは国際的にも大きく報道され、これ以降日本、オーストラリア、ニュージーランド等の幾つかの国で動物に一般特許法による特許を付与することが始められた。

3-2-3. 米国における微生物自体の保護
1980年に最高裁判所は“Diamond v. Chakrabarty”事件において、通常の特許（utility patent）による微生物の特許を認める画期的判決を下した。その特許は「少なくとも2個の安定なエネルギーを発生するプラスミドを含有し、各々の該プラスミドが個別の炭化水素を分解する酵素系をもつPsE Udomonas属細菌」という微生物のクレームに付与されたものであるが、その判示内容には以後度々引用されることとなる金言「およそ世の中で人為的に創作されたものは全て特許保護の対象

- 27 -
とされるべきである」を含んでおり、あらゆる種類の生物特許への扉を開いた。
そしてこの判決以降、PTOは、細菌、酵母、セルライン等を含む種々の微生物
に特許を付与し始めた。

3-3．日本における生物自体の保護

生物自体の保護としては、日本においても 1978 年から UPOV 条約に則った植
物品種の保護が先行して開始された。しかし、植物自体の特許に関しては、古くは、
欧州と同様に発明の反復可能性について“育種過程の反復可能性必須説”にしたが
った厳しい運用がなされ、しかも、交配・選抜等のオールドバイオテクノロジーで
育成された植物は、本質的に開示要件、特許要件等を満たし難いことと相まって、
現在まで、1985 年に種間雑種の包括的植物が 2 件が特許されたのみである。これに
反し、ニューバイオテクノロジーで作出された植物に関しては、遺伝子操作で形質
転換された包括的植物（トランスジェニック植物）が、1997 年以降特許され、今後
もこのような植物が通常の特許要件を満たす限り特許される。

また、動物自体の特許については、1988 年、米国において動物特許第 1 号が付与
された翌年から、日本においても動物特許の付与が始まり、オールド及びニューの
バイオテクノロジーで育成された動物が多数特許されている。

さらに、微生物自体の特許については、1980 年米国最高裁が "Diamond v.
Chakrabarty" 事件で微生物自体の特許を認める判決をした翌年の 1981 年から微生
物自体の特許が開始され、以後多数の微生物の特許が認められている。

3-3-1. 日本における植物自体の保護

（1）日本における植物品種保護

日本においては、1978 年に 1978 年の UPOV 条約に則った種苗法が制定
され、順調に品種保護が行われてきたが、1998 年に 1991 年改正 UPOV 条
約に則った種苗法の改正が行われ、1998 年 12 月に施行された。

1998 年改正種苗法では、1991 年改正 UPOV 条約の義務規定にしたがっ
て、育成者権の強化・拡大が行われている（3-1-1. 1 ii-4 ©1991 年改正
UPOV 条約の主要な改正点参照）。
日本における植物の特許

i. 植物の特許に関する審査基準、審査の運用指針

植物の特許に関しては、次のような審査基準等が順次発表され、現在は、1977年の運用指針にしたがって植物の特許出願の審査が行われている。

① 1975年「植物品種」に関する審査基準
② 1993年「審査基準」第2章生物関連発明、2.植物。
③ 1997年「特定技術分野の審査の運用指針」第2章生物関連発明（以下、“バイオ運用指針”という）、1.遺伝子工学、3.植物
④ 2001年審査基準「第VII部 特定技術分野の審査基準」第2章生物関連発明、1.遺伝子工学、3.植物

ii. 植物に関する審査基準の規定

(a) 植物自体の発明の進歩性に関する審査基準の規定

審査基準には、植物自体の発明の進歩性について以下のように規定されている。

“植物自体の発明については、例えば、作出された植物の特性が、その植物が属する種の公知の植物の形質から容易に予測できかつ効果に格別のものがない場合は、進歩性を有しない。

例1：その植物が属する種の公知の植物と形状又は色彩が類似しているもの。
例2：その植物が属する種の植物の公知の形質の組み合わせにすぎないもの。

この審査基準の規定は、従来からの植物自体の発明の進歩性の運用を明文化したものと考えられる。そして、このような運用によれば、オールドバイオテクノロジーで育成された植物品種の特許が成立するのはかなり困難なことは明らかである。すなわち、オールドバイオテクノロジーにおける植物自体の作出が、次の①及び②のような実態であるからである。

① 同一種内の品種間交配による小さな形質の差異をもった植物の作出
② 前記同一種内の品種間交配は技術的に容易であり、それによって同一種内の別品種同志の望ましい形質を組み合わせることも技術的に容易で
ある。

事実、従来幾つかのオールドバイオテクノロジーで育成された植物品種の出願があったが、植物品種の特許例はない。そして、オールドバイオテクノロジーで育成された植物の特許としては、わずかに、1985年に付与された2件の薬用よもぎの特許があるが、この特許は、困難な種間交配を特別の手段によって可能にして育成された植物で、交配プロセス、ある範囲のゲノム数、および少数の特性で特定された、1品種に限定されない包括的植物の特許である。

(b) 形質転換植物に関連する審査基準の記載と特許例

審査基準の 1. 遺伝子工学 4 形質転換体の項に次のような一般的規定と、形質転換体植物の例が記載されている。

“形質転換体は、①宿主、②導入遺伝子（又は組換えベクター）、の少なくとも一方を特定して記載することができる。
例2: ATGACT……の塩基配列からなる毒素遺伝子が挿入されており、かつ、該毒素遺伝子が発現している植物”

そして、現実に、この審査基準の規定を満たす例2のような形質転換された包括的植物（トランスジェニック植物）の特許が、）付与されており、今後も同様の特許がなされていくものと思われる。

3-3-2. 日本における動物自体の保護

既述のように、1988年、米国において動物特許第1号が付与された翌年から、日本においても動物特許の付与が始まり、オールド及びニューのバイオテクノロジーで育成された動物が、かなり特許されている。

3-3-3. 日本における微生物自体の保護

微生物自体の特許については、特許庁は、すでに1979年に「微生物の発明に関する運用基準」を公表して微生物自体の特許を認めることを明らかにし、1980年米国最高裁が“Diamond v. Chakrabarty”事件で微生物自体の特許を認める判決をした翌年の1981年から、現実に微生物自体の特許が開始され、以後多数の微生物の特許が認められている。
そして、現在の審査は、審査基準の1. 遺伝子工学及び2. 微生物の規定に従って行われている。

3-4. 日欧米以外の国における生物自体の保護

日欧米以外の国においても、最も保護体制が進んでいるのが、UPOV条約に基づく植物品種保護である。一方、かなりの国で、植物品種及び動物品種が不特許事由とされている。なお、特異な例として韓国及びフィリピンが米国的な無性繁殖植物の品種を対象とする植物特許制度を有している。また、動物に関しては、オーストラリア及びニュージーランドが一般特許法による包括的動物の特許を行っている。微生物に関してでは、殆どの国が特許要件を満たせば特許する体制となっているようである。

4. 遺伝子関連発明の保護

生物自体の保護の場合と異なり、遺伝子関連発明の保護は、少なくとも日・米・欧のような特許先進国間では、その保護の基本的概念はほぼ共通している。したがって、ここでは、一般的な問題は、日本における実態を中心に説明する。

4-1. 遺伝子関連発明の開示とクレーム

4-1-1. 出願明細書における発明の開示

発明者は、自己の新しい技術を公開することにより、はじめてその技術開示に見合う特許権が与えられる（第3図参照）。これは、特許制度を支える重要な原則の一つで、そして、それにより、権利を付与された者とその権利の制約を受ける第三者との間に調和を求めつつ、技術の進歩を図り産業の発達に寄与することができるのである。

そして、この技術開示は、特許出願の明細書の記載によって行われる。

4-1-2. 開示における実施可能要件

上記特許出願の明細書に記載による技術開示は第三者の利用可能性を担保するものであるから、その発明の技術分野における通常の技術知識を有する者（以下、当業者という）が実施できる程度の技術開示であること、すなわち実施可能要件
を満たすことが要求される。そして、その発明が遺伝子、組換え等の物の発明である場合には、実施可能要件として、当業者で明細書の記載によってその物を作成可能であること、およびその物を使用可能であることが要求される。

さらに、遺伝子関連発明の実施がDNA、組換えベクター、細胞等の生物材料の使用を必須とし、それが入手不能であり、かつ、明細書の記載によっても創製不能の場合は、5（1）に記載した寄託制度により、これらの生物材料を寄託することが必要で、それを怠ると明細書の開示は実施可能要件不備として、出願が拒絶されることとなる。

第3図 技術の公開に見合う独占権

竹田（1996）. 特許がわかる12章. ダイヤモンド社

4-1-3. 遺伝子関連発明における請求項の記載

（1）遺伝子関連発明におけるクレームの一般的問題

上記のように、出願明細書に発明が開示されても、その記載のうちどこまでが特許権が及ぶのかは明確ではない。そこで、出願明細書に開示した発明のうち、特許出願人が特許を受けようする発明をクレームに記載し、そのクレームされた発明を対象に審査をするとともに、特許登録後は、そのクレームの記載に基づいて特許権の権利範囲が定まる制度が採用されている。

そこで、特許出願人は当然できるだけ権利範囲が広いクレームを求めるこ
とになるが、その場合、遺伝子関連発明において特に問題となるのは、出願
明細書の記載に基づく実施可能要件の観点から、許容されるクレームの広さ
である。
すなわち、従来の典論的な化学発明においては、技術開示の十分性が裁判
事件等で決定的な争点となることは、さして多くなく、大抵の論争は、新規
性及び進歩性の領域で戦われた。しかしながら、バイオテクノロジー分野の
発明、特に、遺伝子工学分野の発明では、この技術開示の十分性の問題が、
各国特許庁の審査・審判実務においても、又、係争事件においても、大きな
争点となっている。そして、この問題が特許関係の国際会議等でも再々取り
上げられ、また、日米欧 3 極特許庁のバイオテクノロジー特許運用に関する
比較プロジェクトでも、この問題が主要なテーマとなっている。
これは、一つには、この分野の技術が複雑かつ進歩が迅速であり、実施可
能要件の値付けとなる技術常識や入手可能な技術手段も日々進歩しつつある
ため、出願時点で技術開示を十分に行うこと、及び実施例に基づく実施可能
な範囲の予測が極めて困難であることが挙げられる。
しかし、それと共に、次に述べるような遺伝子関連発明の、従来の典論的な
化学物質の発明と異なる特殊性によるところも大きい。すなわち、遺伝子
の商業的な価値は、一般的にそれのコードするタンパク質がどのような有用
な機能を発揮するかによる。ところが、そもそも、このタンパク質をコード
する遺伝子の遺伝暗号には、縮重暗号があるばかりでなく、そのタンパク質
をコードする遺伝子の塩基配列の塩基が小々、置換、挿入、欠失等を受けて
も、それがそのタンパク質の機能の要部でない限り、そのタンパク質の本質
的な機能は変わらないことがきわめて多い。
そして、未知の有用なタンパク質の遺伝子をクローニングすることは、し
ばしば、多大の労力と創造性が要求されるが、いったんその遺伝子の情報が
開示されれば、第三者はいとも容易に同効の変異体を作り出ができる。
したがって、もし遺伝子或いはそれに対応するタンパク質の発明のクレー
ムが、化学物質の発明のクレームが化学構造により特定する原則とされると
同様に、一つの塩基配列或いはそのコードするアミノ酸配列で特定すること
を要求されると、その付与される権利は、その発明者のパイオニア的な貢献
度に比較してきわめて小さいものにならざるを得ない。

しかし、この問題を回避するために、これら遺伝子関連発明に安易に機能的表現等のクレームを認めると、クレームが明細書の開示の範囲を超えて不当に広くなる可能性があり、そこに、広いクレームと実施可能要件の対応関係に難しい問題が生起してくるのである。

(2) 日本において許容される遺伝子関連発明のクレームの広さの変遷

i. 配列による限定を原則とする遺伝子及び組換え蛋白質のクレーム並びにその問題点

日本においては、初期の段階では、遺伝子又は組換え蛋白質のクレームは、塩基配列或いはそのコードするアミノ酸配列で特定するのを原則とする運用がなされた。

すなわち、1984年に特許庁が公表した「微生物分野における遺伝子士学に関する発明の当面の審査上の取り扱い」においては、外来遺伝子のクレームを次のように記載すべきこととしている。

外来遺伝子のクレームの記載

(1) 原則:下記のような塩基配列による特定

「TGAT……AAGAAの塩基配列で表されるヒトインターフェロン遺伝子」

(2) 例外:外来遺伝子がコードするアミノ酸配列が新規な場合、下記のようにアミノ酸配列で表現された塩基配列により記載できる。

「MetAsp……LysGlu で表されるアミノ酸をコードするヒトインターフェロン遺伝子」

そして、この遺伝子に関する“取り扱い”の規定に基づいて組換え蛋白質のクレームについてもアミノ酸配列による特定を原則とした運用が行われていた。

しかし、このような一つの決まった配列で特定された遺伝子や組換え蛋白質のクレームは、後述するように第三者の実施品がクレームされた配列と一箇でも相違すると文言的には権利範囲外となるのでその権利範囲は非常に狭いものである。そして、この遺伝子のクレームの
記載に関する規定は、1993年に公布された生物関連発明の審査基準にも、ほぼ、そのまま維持されていた。

ii. t-PA事件及び均等論

上記のような一つの決まった配列で特定したクレームの権利の狭さが露呈したのが、1989年に米国企業G社が日本のS社に対して提起したt-PA特許の権利侵害訴訟事件であった。ちなみに、このt-PAは心筋梗塞の医薬とし有用な蛋白質である。次に、このG社のt-PA特許のクレームを示す。

G社の特許第1599082号(t-PA特許)のクレーム

(優先日1983年4月7日)

「ヒト細胞以外の宿主細胞が産生する、以下の特性：1) ... 2) ... 3) ... 4) ... 5) ... を有するヒト由来の他のタンパクを含有しない組換えtPA*であって、以下のか部分的アミノ酸配列を含んでいる活性化因子：SER(69番)ASPPHE...省略...VAL(245番)...省略...MET ARG PRO(527番)。」S社「...MET(245番)...」

（注）「組織プラスミノーゲン活性化因子」を「t-PA」と言い換えた。（○○番）は筆者が付加した。

このG社の特許クレームでは、t-PAは、前半の組換えt-PAの性質に関する要件と、後半の69番のSERから527番PROでおわる459個のアミノ酸配列で特定されている。

これに対して、S社の実施しているt-PAは、この245番のアミノ酸がVALからMETに置換され、その他のクレームの要件については全く一致していた。

ところで、特許発明の権利範囲はクレームの記載に基づいて定められるので、第三者の実施品がその特許クレームに記載された要件を文言通りすべて含む場合、それは原則としてその特許権の権利範囲に含まれることになる。すなわち、文言解釈によるクレームの権利範囲に入ることになる。また、逆に特許クレームのこれらの要件を一つでも欠如していると文言解釈による権利範囲に入らないことになる。

そして、前記のようにG社のt-PAとS社のt-PAとは、第245番のアミノ酸がVALからMETへ一個置換されているため、S社のt-PAは、G社の
t-PAのクレームの第245番がVALであるという要件を欠如することになり、G社のクレームされたt-PAの文言解釈の権利範囲に入らないことになる。そのG社の特許t-PAとS社のt-PAとの権利関係を示したのが、第4図である。斜線の部分がクレームの要件を全て備えた文言解釈による権利範囲の部分であるが、この図に示すように、S社のt-PA（MET t-PA）はG社のt-PA（VAL t-PA）とただ一個のアミノ酸が相違するだけで、文言解釈による権利範囲外となり、そのため、1994年の大阪地裁の判決ではS社の侵害は否定された。

この図により、一つの決まった配列により特定したクレームの権利範囲が如何に狭いかが分かる。

ところで、この第4図に示したように、第三者の実施品等が文言解釈による権利範囲外とされても、その物がその特許発明と置換しても、その発明の目的を達成でき、同一作用効果を奏する等の要件を満たすものは、特許発明と均等物とされ、図の白い輪で示しますように均等論の適用により権利範囲に入り侵害になる。
そして、Ｇ社は、前述の大阪地裁の判決に不服として大阪高裁に提起した上訴審において、多数の権威者の鑑定書や証人を繰り出すなど、非常な努力を傾けてようやく1996年に、Ｓ社のMET－tPAは、Ｇ社のVAL－tPAの均等物であって、Ｓ社はＧ社のVAL－tPAの特許権を侵害するという判決を勝ち取ることに成功した。なお、この判決は上告取下げにより確定している。

iii. 日本において許容されている包括的クレームの典型的表現形式

1990年代中頃に入って、1980年代の初期或いは中期以降のバイオ特許の出願に対して、一つの配列等に限定されない権利範囲のより広い包括的クレームの特許が、ぼつぼつ、認められ始めた。そして、形質転換体生物についても、古い審査基準ではめられていた種、属等の生物の分類単位の枠に限定されない、遙に包括的乃至一般的表現のクレームの特許がいろいろ認められるようになっただけ

そして、1997年公表のバイオ運用指針において、以下に示すような、遺伝子関連発明の包括的クレームの典型的表現形式が提示され、その後審査基準に含められている。

① 包括的遺伝子クレーム

審査基準は、明確要件及び実施可能要件を満たすことを条件として、次の例１及び例２の包括的な広い遺伝子クレームができることとしている。

例１：以下の（a）又は（b）のタンパク質をコードする遺伝子。
（a）Met－Tyr－…－Cys－L E Uのアミノ酸配列からタンパク質。
（b）アミノ酸配列（a）において１若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつA酵素活性を有するタンパク質。

（注）（a）のタンパク質はA酵素活性を有するものである。

（b）のタンパク質をコードする遺伝子については、第三者が過度な実験を行うことなく当業者が作ることができるに、発明の詳細な説明に記載されているものとする。
例2：以下の（a）又は（b）からなる遺伝子。
（a）ATGTATCGG…TGCCCTGの塩基配列からなるDNA
（b）（a）の塩基配列からなるDNAとストリンジェントな条件でバイブリッダイズし、かつB酵素活性を有するタンパク質をコードするヒト由来のDNA
（注）（a）のDNAのコードするタンパク質はB酵素活性を有するものである。
「ストリンジェントな条件」については、発明の詳細な説明に記載されているものとする。
そして、現実に、上記例1、例2に類する包括的な記載の遺伝子クレームの特許が多数特許されている。
なお、この表現形式以外の、理化学的性質、由来、製造プロセス、各種機能等で特定した包括的遺伝子クレームも種々特許されている。

② 包括的形質転換体クレーム
審査基準は、明確要件及び実施可能要件を満たすことを条件として、特に宿主に関し、次の例1～例3のような包括的な広い形質転換体のクレームができることとしている。
例1：Met-Asp…Lys-Gluのアミノ酸配列を有するタンパク質をコードする遺伝子を含む組換えベクターを含む形質転換体。
例2：ATGACT…の塩基配列からなる毒素遺伝子が挿入されており、かつ、該毒素遺伝子が発現している植物。
例3：…省略…任意のタンパク質をコードする構造遺伝子を結合させた組換えDNAを有し、該任意のタンパク質を乳中に分泌することを特徴とする非ヒト哺乳動物。
そして、例1のような形式の形質転換体クレームは多数特許されており、また、例2、例3のような形式の植物、動物の特許例も幾つかあることは既に述べた通りである。
③ 包括的組換えタンパク質クレーム

審査基準は、明確要件及び実施可能要件を満たすことを条件として、次の例（b）のような包括的な広い組換えタンパク質のクレームができることとしている。

例：以下の（a）又は（b）の組換えタンパク質。

（a）Met-Tyr…Cys-LEUで表されるアミノ酸配列からなるタンパク質。

（b）アミノ酸配列（a）において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつA酵素活性を有するタンパク質。

（注）（a）のタンパク質はA酵素活性を有するものである。発明の詳細な説明において、アミノ酸の欠失、置換、付加の程度について説明する必要がある。

そして、現実に例（b）のようなクレームが幾つか特許されている。

このクレーム（b）は、「アミノ酸配列（a）において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり」という表現になっているので、この特許が有効である限り、相手方の遺伝子に関する配列が（a）の配列と数個相違していても、同一機能を有するものであれば、先に述べたG社の特許侵害事件におけるような均等論を持ち出すまでもなく、文言上、特許遺伝子の権利範囲に入ることになる。

したがって、このようなクレームが特許されるようになって、特許権者の権利が著しく強化されたことは明らかである。

そして、次に示すように、G社はこの運用指針公布後に、前述の侵害訴訟事件のt-PA特許の分割出願について、前述の欠失、置換若しくは付加タイプのクレームの特許を取得致した。

すなわち、G社のt-PA発現ベクターの特許第2,564,444号のクレーム1（第3番目の優先日1983年4月7日）は、次の通りである。

「下記アミノ酸配列1〜527を有するヒトt-PA*、または下記アミノ酸配列にアミノ酸残基の削除、付加、または置換を施すことによって得られるアミノ酸配列を有し、t-PAの特性を有するヒトt-PA*誘導体、をコードするDNAを発現させ得る組換え発現ベクター。」
（注）* 『組織プラスミノーゲン活性化因子』を「t-PA」と言い換えた。
このクレームでは、「下記アミノ酸配列にアミノ酸残基の削除、付加、または置換を施すことによって得られるアミノ酸配列を有し、」となっているので、最早245番のVALをMETに置換しても、文言解釈により権利範囲に入ることは明らかである。

4-2. 遺伝子関連発明の記載要件、及び有用性（産業上の利用性）

4-2-1. 遺伝子関連発明の有用性あるいは産業上の利用可能性

特許法の目的は産業の発達にあるから、有用性あるいは産業上利用可能性のある発明のみが特許される。
そして、一般的な工業的発明において、現実にこの有用性あるいは産業上の利用可能性が問題となるケースは、きわめて少ないが、遺伝子関連発明に関しては、これがしばしば重大な問題となる。その理由は、天然から得られたDNA断片や、ペプチドがその有用な機能が不明乃至不明确な場合がよくあるからである。
これが問題となる典型的な例が、4-2-2 に述べるESTsの発明である。

4-2-2. ESTsの発明の特許性

約30億DNA塩基配列を有するヒトゲノムをすべてシークェンスする「ヒトゲノム計画」が1990年代に入り本格化し、大量のEST（expressed sequence tag：ヒトのcDNAクローンをシークェンスすることによって得られた150bpから500bp程度の長さのcDNA配列であって、典型的には、プローブとして使用する以外は具体的機能が不明のもの）が解明されるにつれ、そのようなcDNA断片の特許性が日欧米で大きな問題となってきた。
（1）遺伝子断片（ESTs）に関する三極比較研究

このような状況に対応するため、1998年末、日米欧の三極特許庁間でDNA断片の特許性について比較研究を行うことが合意された。この比較研究は、9間の仮想ケースについて、各庁が産業上の利用性（有用性）、実施可能要件、新規性、進歩性、単一性等の観点から審査の運用を報告し、これを比較して取りまとめという形で行われた。そして、1999年6月“DNA断片の特許性に関する三極特許庁比較研究”が公表された。
さらに、三極特許庁はその機能がホモロジーサーチによって推定される核酸分子関連発明の有用性や進歩性の問題について、新たな比較研究を行い、2000年11月その結果が公表された。

4-2-3. 明細書の記載要件、有用性の見直し

日本では、機能未知の遺伝子断片出願を適切に審査する指針として、審査基準が2003年に改定された。「もの」の発明の実施可能要件は、単に「もの」が製造できるように記載する要件としてのみ捉えるのではなく、その「もの」が使用できる程度に機能などが明細書中に記載されていることを要件とする点がより明らかとされた。

米国でも、Written Description要件についてのガイドラインが公表され、Written Description要件が、実施可能要件とは別要件として存在することが再度確認された。Written Description要件を満たすか否かの判断においては、出願時点で、明細書の記載から、発明者が当該クレームされた発明全体を所有していたと判断できるか否かがポイントとされ、具体的には、実際の実施、図面又は化学式の記載、充分な同定できる特性（完全な構造、部分構造、物理化学的性質、機能と構造の相関が既知又は開示された場合における機能）、クレームされた発明の製造方法、当業者レベル、技術の予見性などに基づいて判断されるべきことが明らかにされた。

また、有用性についても新たにガイドラインの改定が発表された。このガイドラインでは、まず発明に、具体的（specific）で実質的で且つ信用できる確立した有用性がないかどうかが検討される。そうでない場合は、出願人により主張される有用性が、十分に具体的で実質的であるかについてまず検討され、次に、その有用性が信用できるかどうかについて検討するというものである。

このような記載要件や有用性の判断基準を採用することにより、いわば特許制度の目的である有用な発明の開示なくして、その後になされる発明に保護を求めるような傾向に一定の歯止めがかけられたといえよう。
4-2-4. リーチスルークレーム（現在開示される発明に基づく将来の発明クレーム）

いわゆるリーチスルークレームは、基本となるスクリーニング方法を用いて同定されるかもしれない候補化合物及び当該候補化合物の下流側の用途に対するクレームを包含するものである。

三極特許庁は、リーチスルークレームについての審査の比較研究を行った。
2001年11月に報告者で公表された。当該報告書は次の事項を明らかとした。

(1) あるリセプターの特定の機能（例えば、特定の病気への関係）が開示され当該リセプターを用いて特定のアゴニストが同定されている場合、スクリーニング方法、用途、及び当該アゴニスト（活性化化合物）を用いた薬剤のクレームは、当該使用をどのように実施するかについて十分なガイダンスがある限り、全ての要件を満たす。

(2) 当該スクリーニング方法により同定されたアゴニスト全般（活性化化合物全般）、当該方法、用途、及び当該アゴニスト全般（活性化化合物全般）を用いる薬剤に対するクレームは、そのクレームの全般性を考慮すると、実施可能要件及び又は支持要件を満たさない。

Ariad v Eli lilly において、NF-κB の活性化と病状が関連することを見出した発明者等は、NF-κB の活性化の低下により病状を改善できるであろうと考え、NF-κB の活性化を低下させることを含む方法をクレームした。明細書には、NF-κB の活性化が低下する物質がいかなるものかについて、例示として、自然状態で、κB が活性化されるまで結合している l-κX のみが記載されており、これは、優先日には記載されていないものであった。さらにドミナントネガティブについての記載や、デコイについての予言的実施例はあったものの、ドミナントネガティブの記載は将来への研究計画に過ぎず、デコイ分子の記載は、単に希望的結果を述べるものとされた。結局、クレームされた発明は、裏づけ（written description）要件を満たさないと CAFC で判断された。そのご、en banc の判断が求められている（2009年11月）。

・42・
4-2-5. 遺伝子関連発明の新規性および進歩性

特許法は、発明を保護・奨励することによって、産業の発達に寄与することを大きな目的としているが、新規性および進歩性のない発明に独占権を付与すると却って産業の発達を阻害することは明らかである。したがって、新規性および進歩性は基本的な特許要件となっている。

そして、遺伝子などの生物関連発明に関しても、当然、この新規性および進歩性の要件を満たすことが要求され、この要件に関し各国ともほぼ共通の基本的概念のもとに運用している。しかし、進歩性の運用に関し日欧と米国との間で、際立って運用に差異のあるものがあったが、近年その運用が近づきつつあるように見られる。

(1) 日本の審査基準における遺伝子関連発明の新規性及び進歩性判断の規定

審査基準には、遺伝子関連発明の新規性・進歩性について、次のような規定が置かれている。

i. 新規性

組換えタンパク質

タンパク質が単離・精製された単一物質として公知である場合において、製造方法により特定して記載された組換えタンパク質に係る発明は、上記公知のタンパク質と物質として区別ができない場合、当該発明は新規性を有しない。

ii. 進歩性

(a) テンパク質Aは公知であるが、そのアミノ酸配列は公知でない場合、テンパク質Aをコードする遺伝子に係る発明は、テンパク質Aのアミノ酸配列を出願時に当業者が容易に決定することができたと認められれば進歩性を有しない。ただし、該当遺伝子が、特定の塩基配列で記載されており、かつ、テンパク質Aをコードする他の塩基配列を有する遺伝子に比較して、当業者が予測できない有利な効果を奏する場合には、進歩性を有する。

(b) テンパク質Aのアミノ酸配列が公知である場合、テンパク質Aをコードする遺伝子に係る発明は、進歩性を有しない。ただし、
該遺伝子が、特定の塩基配列で記載されており、かつ、タンパク質Aをコードする他の塩基配列を有する遺伝子に比較して当業者が予測できない有利な効果を奏する場合には進歩性を有する。

(c) ある構造遺伝子が公知である場合、公知の構造遺伝子と同種由来であって、かつ公知の構造遺伝子と同一の性質・機能を有する、天然に存在する変異体（対立遺伝子変異体）の構造遺伝子に係る発明は、進歩性を有しない。ただし、本願発明の構造遺伝子が上記公知の構造遺伝子に比較して、当業者が予測できない有利な効果を奏する場合には、進歩性を有する。

上記(a)及び(b)の規定による進歩性の否定は、いずれも、タンパク質Aのアミノ酸配列がわかれば、そのアミノ酸配列に基づいて周知・慣用のクローニング手法によりそのタンパク質Aをコードする特定の遺伝子の単離を試み、その配列を決定することは容易であるということを根拠にするものである。すなわち、得られた特定配列の遺伝子に格別の効果がない限り、当該遺伝子を提供することを阻害する要因がなければ進歩性が否定されることを明らかにしたものと考えられる。また、(c)の規定も試行容易を進歩性否定の根拠とする点では同様と考えられる。

そして、バイオテク運用指針が遺伝子の進歩性に関し、このような判断基準を取っている大きな理由は、一般的に現在の技術水準ではタンパク質Aのアミノ酸配列がわかれば、その情報に基づいて所期のタンパク質Aをコードする特定配列の遺伝子を得ることは、合理的に期待できるからである（すなわち、合理的な成功の期待がある）。なお、審査基準は上記のような判断基準を取っているものの、それぞれのクレームされた発明の個別的状況も考慮に入れるべきであることは言うまでもない。たとえば、すでに単離されたホルモンであっても、従来技術によっては、微量の他のホルモンの夾雑を避けられず、かつ、該ホルモンにおいては、微量の夾雑ホルモンの影響が重大であるとき、遺伝子組み換え方法では当該ホルモンを他の夾雑ホルモンを含まずに製造できるので、遺伝子組換え法により製造された該ホルモンの新規性を首肯するとの判断(H9(行ヶ)302)もなされている。
(2) EPOにおける遺伝子の進歩性判断の運用

EPOにおける進歩性判断には、could−would approachとも呼ばれるテストがある。進歩性の否定には、単に発明「し得たであろう」(could)という理由付けでは、不十分とされ、発明「したであろう」ことを示すことが必要であるとされている。そして、たとえ、あるプロジェクト試みることが容易であっても、合理的な成功の期待がなければ、進歩性を否定し得ない。合理的な成功への期待とは、成功への希望とは異なるものである。

遺伝子技術の進歩及び技術の確立に伴い、合理的な成功への期待があったと判断される事例が増え、日本の審査基準と類似した遺伝子の進歩性判断の運用となっている。

(3) 米国におけるobvious-to-tryに基づく遺伝子の進歩性判断を不適切とする判決

米国のCAFCは、1995年のDeuel判決において、次のような趣旨の判断を示して、当該遺伝子に対応するタンパク質のアミノ酸配列等が公知の場合における、obvious-to-tryに基づく遺伝子の進歩性判断を否定した。

“問題の蛋白質をコードするDNA及びcDNAは、先行技術として挙げられた遺伝子クローニング方法ならびに蛋白質の一部アミノ酸配列を開示する特許出願によって一応自明(Prima facie obvious)とはされない。蛋白質に関する知識から、コードした特定のDNAは着想されるものとは認められない。また、cDNAまたはDNAを分離する一般的な方法が存在することは、特定の分子自体が自明か否かということと関連性がない。”その後上記判決に基づく審査運用がされてきたが、このような運用については、批判が出されるようになってきた。また、いわゆるTSM(Teaching, suggetion,motivation) testを過度の厳格に運用することにより進歩性を肯定的に判断することが、KSR vs. Teleflex事件(最高裁、2007年)においても取り上げられ、そのなかで、obvious-to-tryであっても進歩性を否定できる場合のあることが述べられた。

上記判決後公表された審査ガイドラインには、限定された数の予想できる解法から選び、成功する合理的に期待があるobvious-to-tryについては、容易と判断できる理論的根拠の一つとして示されている。その後、KSR判決を踏まえて、In re
Kubin 事件においては、あるタンパク質のある領域をコードするヒト遺伝子の単離する場合の容易性に付いて検討された。該タンパク質が単離され、更にそのタンパク質に対するモノクローナル抗体も調製され、このモノクローナル抗体を用いるその DNA の単離方法も従来技術文献には記載されていたことから、Kubin らの発明は、当業者に容易になし得たものとされた。

5. その他の問題
5-1. 生物材料の寄託制度
4.1 に述べたように、特許出願明細書には、当業者が実施し得るように発明を記載しなければならない（実施可能要件）。

しかし、その発明の実施に特定の微生物の使用が必須であり、しかもその微生物が入手不能であり、かつ明細書の記載で作成することも不能な場合、当業者は明細書の記載のみでは当該発明を実施することができない（実施可能要件不備）。このような場合の、明細書の記載による実施可能要件不備を補完し、発明を実施可能とするために案出されたのが、微生物の寄託制度である。

すなわち、多くの国は、パン酵母のように市販されて容易に入手できる微生物や、明細書で記載できるように記載できる微生物を除いて、多くは出願前の微生物の寄託を要求し、かつ一定の時点から希望者に対する微生物の分譲を義務付けている。日本でもそのような場合は、特許庁長官の指定期間である工業技術院生命工学研究所（生工研）の寄託証明書か、ブダペスト条約の国際寄託当局の交付する受託証の写しを願書に添付し、寄託番号を明細書に記載することを要求し、この要件を満たさない場合は、明細書の開示は実施可能要件不備として拒絶される（第 5 図参照）。

ブダペスト条約とは、各国がそれぞれ微生物の寄託を要求すると手続が複雑になり手数料の負担も大きくなるので、出願人が一つの国際寄託当局に寄託するだけで、ブダペスト条約全加盟国に対して寄託の効力を生ずることとしたものである（第 6 図参照）。

そして、最近では微生物のみでなく、動物・植物細胞、種子、凍結卵等の寄託も行われるようになってきている。
第5図 寄託制度

寄託制度
（生命研
（国際寄託当局）

分譲

分譲請求

第三者
（研究活動）

寄託番号
保存

出願人
（微生物に関する発明）

微生物の寄託
（出願前）

出願
（寄託番号）

登録

特許庁

技術公開

編集：通商産業省産業政策局、知的財産政策室
（バイオテクノロジーその現状と成果保護のあり方）より
第6図 ブタペスト条約による出願方式

微生物の提出

出願

A国

B国

C国
5-2. 生物多様性条約

1993年の生物多様性条約の発効と共に、バイオテクノロジーの研究開発及び知的所有権による権利化は、生物多様性条約との関係を考慮しつつ進めることが必要となった。

(1) 生物多様性条約成立の背景

生物の多様性の保全はきわめて重要な世界的問題である。また、節度のない開発が多様性の保全を危うくしている現実がある。したがって、バイオテクノロジーの発展に伴い、遺伝資源の利用もますます拡大されるであろうが、それは、生物多様性の保全に十分な配慮をした持続可能なものでなければならない。

また一般的に、遺伝資源は開発途上国に偏在しており、一方、先進国は途上国の遺伝資源を利用して研究開発を行う関係にある。したがって、先進国はその研究開発の成果を開発途上国に還元し、両者の公正な利益配分を図ることも肝要である。

このような問題点を背景として、1988年から国連環境計画（ＵＮＥＰ）で検討が重ねられ、1992年5月の条約交渉会議において「生物多様性条約」として採択され、1993年12月発効した。本条約には、日本を含む193カ国（2009年12月）が加盟しているが、米国は批准していない。

(2) 本条約の概要

i. 本条約の目的

地球上の生物について、生態系、種、遺伝子等の各段階における多様性を保全し、その持続かつ公正な利用を図ることを目的とする。

ii. 条約の主要規定

① 生物多様性の保存

生物多様性の保全と持続的利用についての国家戦略と総合計画の作成を行うとともに、保全・利用上重要な生物多様性の構成要素を特定しつつその動向を監視する。また、保護地域の指定等による生息域内保全と生息域外保全の実施促進を行う。

② 遺伝資源へのアクセス

遺伝資源保有国の主権を認めた上で、遺伝資源の入手については相互の合
意した条件で事前承認を必要とする。さらに遺伝資源に係る研究には遺伝資源提供国が参加できるように努めるとともに、研究開発による成果とそれにより得られた利益については遺伝資源の利用側と提供側とが相互合意の条件の下で公正な配分を行う。

③ 技術移転の促進と協力
生物多様性の保全・利用に関する技術の、途上国への移転の促進に努めるとともに、国際的な技術・科学上の協力を促進する。

④ 財政支援
本条約実施のために先進国は新規で追加的な資金を提供するとともに、途上国への資金提供のための制度を設立する。

iii. 知的財産権との関係
上記ⅱの遺伝資源へのアクセスと利益分配について、その円滑な運用には、遺伝子源を特許出願書類に表示する必要であるという議論がなされてきた。すでに、中国や、インド、欧州諸国など、そのような規定を設ける国が現れてきた。但し、生物材料の出所について記載のない場合の規定は、国により異なり、特許出願・特許権への影響はないとする国もある。

5-3. 再生医療技術、幹細胞技術に関する問題点
5-3-1. 幹細胞の保護 倫理的側面、公共的側面
（1）幹細胞は、その分化能力から、再生医療、細胞治療などのへの応用が期待され、造血形幹細胞を始め、種々の幹細胞についての研究がなされてきた。特に、幹細胞の内、胚性幹細胞（ES 細胞）は、全能性の分化能を有することから、再生医療への応用などで特に期待を集めているが、他方、胚性幹細胞の調製には、受精した胚が必要であり、倫理的側面が問題となった。ウィスコンシン大学（WARF）からの ES 細胞出願につき、EPO 拡大審判部は、出願時点で、ヒトエンブリオの破壊によってのみ調製できたであろう物へのクレームは、係る調製方法がクレームの一部にふくまれないとしても、欧州特許条約規則 28（c）の規定により許されないと判断した。更にこの判断は、出願後にヒトの胚を破壊することなく調製できるようになったとしても、上記判断に影響を与えないとした。
(2) 米国においても、WARF の特許権がヒト ES 細胞を利用した医療技術の発展をかえって阻害するという懸念が生じ、Public Patent Foundation 等から、米国特許庁に再審査請求がなされた。Public Patent Foundation によると、このようなアクションにより、WARF の非営利機関得のライセンス条件を緩和したと報じられている。審査官は、補正の上、再度特許性アリとの判断をしたが、Public Patent Foundation 等により審判請求されている（2009 年 11 月末）。

(3) また、iPS 細胞は、ヒトの胚の破壊をすることなくヒトの体細胞から、人工的に誘導した万能細胞 (Pluriopotent) であり、拒絶反応のない移植の可能性など再生医療や新薬開発への利用についても注目されている。日本でもその製造方法が既に特許として成立している。

5-3-2. 日本における細胞治療の細胞調製と産業上の利用性

従前は、日本では、人工透析のように同一人に戻すことを前提としヒトから採取したものを処理する発明は、ヒトを手術、治療又は診断する方法に包含されるものとして取り扱われてきた。再生医療の進展に伴い、たとえば、人工皮膚シートの作成など、同一人へ戻すことを前提としても、ヒトからの採取物を処理したものを、医師以外のものが処理し、その処理物を用いて医師が治療するような事例が出現してきた。そこで、まず、遺伝子製剤や、皮膚シートなどの調製方法は、同一人へ戻すことを前提とした処理であっても、産業上の利用性を満たすことが改定審査基準により明らかにされた（2003 年）。その後、2009 年には、細胞の分化誘導方法なども、ヒトを手術、治療又は診断する方法には当てはまらないことが再度の改定審査基準により示されている。