平成28年度特許庁委託事業

特許審査関連書類等の日英機械翻訳文
の品質評価に関する調査

報告書

平成29年3月

一般財団法人 日本特許情報機構
目次

1. 概要 ... 4
 1.1 目的 ... 4
 1.2 調査概要 ... 4
 1.3 調査体制 ... 5
 1.4 調査スケジュール .. 6
 1.5 調査結果概要 ... 6
 1.5.1 定型文、用語の追加登録前の機械翻訳文の精度評価 ... 6
 1.5.2 精度評価結果の分析 ... 8
 1.5.3 精度評価に基づく定型文、用語登録有効性の検証 .. 8
2. 定型文、用語の追加登録前の機械翻訳文の精度評価 .. 9
 2.1 評価対象となる日本語原文の選定と基準翻訳文の作成 .. 9
 2.1.1 日本語原文の選定 ... 9
 2.1.2 基準翻訳文の作成 ... 10
 2.2 評価対象となる機械翻訳文の作成 .. 10
 2.2.1 RBMT②の翻訳環境 .. 10
 2.2.2 SMT の翻訳環境 .. 11
 2.2.3 NMT の翻訳環境 .. 11
 2.3 機械翻訳文の精度評価 .. 11
 2.3.1 人手評価 .. 11
 2.3.2 自動評価 .. 21
3. 精度評価結果の分析 .. 27
 3.1 日英対訳コーパスの作成 .. 27
 3.2 定型文、用語登録の検討 .. 27
 3.2.1 翻訳精度低下の原因の分析 ... 27
 3.2.2 精度向上のための定型文、用語の選定 ... 38
 3.3 文分割の検討 ... 44
4. 精度評価に基づく定型文、用語登録有効性の検証 ... 48
 4.1 定型文、用語の追加登録後の機械翻訳文の精度評価 .. 48
 4.1.1 評価用日本語原文 ... 48
 4.1.2 評価対象機械翻訳文 .. 48
 4.1.3 人手評価 .. 48
 4.1.4 自動評価 .. 50
4.2 定型文、用語追加登録後の精度評価に基づく分析..50
 4.2.1 精度評価に基づく分析及び課題の整理...50
 4.2.2 定型文、用語等の対訳リスト作成..60

5. 課題 ...63
 5.1 RBMT①で意図した訳出とならないケース ...63
 5.2 文中の見出し表現..64
 5.3 人手評価と自動評価との相違...64
 5.4 特許庁貸与辞書について..65
 5.5 統計的機械翻訳の課題..65

6. 付録 ..67
 6.1 自動評価手法の概要...67
 6.1.1 BLEU ..67
 6.1.2 Smoothed BLEU ...68
 6.1.3 NIST ..69
 6.1.4 RIBES ..71
 6.2 自由記載部分に基づく日英対訳コーパス...75
 6.3 況用文例に基づく日英対訳コーパス..76
 6.4 審査基準、審査ハンドブック、PCT ハンドブックから作成した日英対訳コーパス..77
 6.5 拒絶理由通知書等の重要用語の翻訳精度の評価...78
 6.6 請求項の翻訳精度の評価..79
 6.7 定型文、用語等の対訳リスト..79
 6.7.1 RBMT ...80
 6.7.2 SMT ...82
 6.8 評価結果グラフ ...83
 6.8.1 自動評価（定型文、用語登録前）...83
 6.8.2 人手評価（定型文、用語登録前後）...88
 6.8.3 自動評価（定型文、用語登録前後）...91
1. 概要

1.1 目的

特許庁では2004年10月から「高度産業財産ネットワーク」（以下、「AIPN」という。）を通じて、海外特許庁に対し、我が国のサーチ及び審査結果に関する情報を英語に機械翻訳して提供している。これにより、海外特許庁では我が国のサーチ及び審査結果を参照することで審査に係る負担が軽減されるとともに、審査の質の向上、ひいては我が国出願人の海外での適切な権利取得につながっている。また、特許庁は2016年7月25日から「ワンポートルドシェ」（以下、「OPD」という。）の公衆提供を開始し、一般ユーザもJ-PlatPatを介して我が国の審査結果に関する情報について英語機械翻訳文を参照することが可能となった。

特許審査関連情報は、特許の明細書で用いられる技術用語、専門用語が多い上に、条文などの法律用語や、起案文書特有の表現をも含むものであり、一文が長く主語がない場合も多く、文章の構造の複雑さから他の文章と比較して精度の高い機械翻訳が困難となっている。

ここで、機械翻訳技術の動向をみると、AIPN、J-PlatPat、OPDの機械翻訳ではルールベース機械翻訳を採用している一方、近年は統計的機械翻訳の精度向上が著しい。このような状況を踏まえると、特許審査関連情報の機械翻訳の精度をより向上させるためには、統計的機械翻訳の将来的な利用についても検討する必要がある。

本事業では、特許審査関連情報のうちの特許審査関連書類類（特に、拒絶理由通知書、拒絶査定、審決）を対象として、統計的機械翻訳により日英翻訳した場合に、ルールベース機械翻訳により日英翻訳した場合と比較して、翻訳精度向上の観点からどのような課題があるのかを明らかにすることを目的とする。特に、平成27年度の拒絶理由通知書、拒絶査定の起案様式統一がなされたところ、実際に平成27年度以降に通知された拒絶理由通知書等に統計的機械翻訳がどの程度適合できるかを調査することを主要な目的の一つとする。

1.2 調査概要

平成27年度以降に通知された拒絶理由通知書、拒絶査定及び審決から日本語原文を選定し、選定された日本語原文に対応する英語の基準翻訳文を人手により作成し、選定された日本語原文を特許庁指定の統計的機械翻訳サービス及び市販のルールベース機械翻訳ソフトウェアにより英語に翻訳し、各機械翻訳文を対応する基準翻訳文と比較し、分析することで機械翻訳の精度評価を行う。精度評価には人手による評価と複数の自動評価を用いる。特許庁指定の統計的機械翻訳サービス又は市販のルールベース機械翻訳ソフトウェアによる機械翻訳文の精度評価が低い日本語原文に注目し、この日本語原文を英語に機械翻訳する上で課題を複数抽出し、それぞれの課題をどのような手法（例えば、前処理や、定型文及び用語登録等）により解決できるのかを検討し、その手法を複数提案する。さらに、定型文及び用語を登録した特許庁指定の統計的機械翻訳サービス及びニューラルネットワーク機械翻訳サービス、市販のルールベース機械翻訳ソフトウェアによる機械翻訳文を精度評価する。
ことにより、翻訳精度向上のための一つとして考えられる定型文及び用語登録の有効性を検証する。検証の結果に基づいて、日英機械翻訳の精度向上に有効な定型文及び用語等の対訳リストを作成する。

1.3 調査体制

図 1.3-1 調査体制
1.4 調査スケジュール

表 1.4-1 調査スケジュール

<table>
<thead>
<tr>
<th></th>
<th>項目</th>
<th>人員 (調査の主体を含む)</th>
<th>11月</th>
<th>12月</th>
<th>1月</th>
<th>2月</th>
<th>3月</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>定型文、用語の追加登録前の機械翻訳文の精度評価</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(1) 評価対象となる日本語表文の選定と基準翻訳文の作成</td>
<td>①翻訳品質評価チーム ②基準翻訳文作成者</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(2) 評価対象となる機械翻訳文の作成</td>
<td>①翻訳品質評価チーム</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(3) 機械翻訳文の精度評価</td>
<td>①翻訳品質評価チーム ②機械翻訳文作成者 ③コナミテック</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5. 精度評価結果の分析</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>(1) 翻訳対象用語の作成</td>
<td>①精度評価分析チーム ②機械翻訳対象用語作成者</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>(2) 定型文、用語を含むの検討</td>
<td>①翻訳品質評価チーム ②定型文、用語検討担当</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.5 調査結果概要

1.5.1 定型文、用語の追加登録前の機械翻訳文の精度評価

本調査では、ルールベース機械翻訳ソフトウェアの RBMT①、RBMT②と、統計的機械翻訳サービスの SMT③、ニューラルネットワーク機械翻訳サービスの NMT④について、機械翻訳文の精度評価を行った。評価は、人手による評価として、内容伝達レベル、重要用語の

1 https://www.j-platpat.inpit.go.jp/web/all/top/BTmTopPage
2 http://pf.toshiba-sol.co.jp/prod/hon_yaku/
3 https://mt-auto-minhon-mlt.ucri.jgn-x.jp/
4 https://translate.google.com/?hl=ja
評価を行い、自動評価として、BLEU⁵、NIST⁶、RIBES⁷による評価を行った。評価結果は、内容伝達レベル、自動評価ともにNMTの翻訳精度が高い結果となった。重要用語評価では、RBMT①、RBMT②の評価が高い結果となった。

図 1.5-1 内容伝達レベル

図 1.5-2 自動評価（BLEU）

図 1.5-3 自動評価（NIST）

⁵ BLEU (Bilingual Evaluation Understudy)：自動評価手法として最初に提案された評価手法。本調査ではバージョン 13a を使用した。（https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/mteval-v13a.pl）

⁶ NIST (National Institute of Standards and Technology)：BLEU の考え方を継承し改良を加えた評価手法。本調査ではバージョン 13a を使用した。（https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/mteval-v13a.pl）

⁷ RIBES (Rank-based Intuitive Bilingual Evaluation Score)：広域的な語順の類似性を考慮した評価手法。本調査ではバージョン 1.02.4 を使用した。（http://www.kecl.ntt.co.jp/icl/lrgr/ribes/index-j.html）
1.5.2 精度評価結果の分析

上記評価結果をもとに分析を行った結果、ルールベース機械翻訳においては日本語の解析誤りにより、用語間の係り受けが適切に認識されない点や未知語などが精度低下の主要な要因であった。また、統計的機械翻訳においても日本語解析が適切に行われないため、適切な語順で翻訳されないものや、原文に存在しない用語の訳出或訳抜けなどが翻訳精度低下の主要な要因であった。

1.5.3 精度評価に基づく定型文、用語登録有効性の検証

上記分析結果を参考に、機械翻訳サービスへ定型文、用語登録の追加を行った上で翻訳精度の評価を行った。その結果、追加した定型文、用語についてはルールベース機械翻訳、統計的機械翻訳ともに定型文の訳語にて翻訳され、有効性が確認できた。
2. 定型文、用語の追加登録前の機械翻訳文の精度評価

2.1 評価対象となる日本語原文の選定と基準翻訳文の作成

2.1.1 日本語原文の選定

特許庁から貸与を受けた拒絶理由通知書、拒絶査定、審決のテキストデータから、以下に示す「対象とする条文」に該当する書類について、技術分野の偏りがないように、拒絶理由通知書、拒絶査定、審決を選定するとともに、選定したそれら書類の自由記載部分から日本語原文を選定した。

＜対象とする条文＞
・第２9条第１項
・第２9条第２項

また、特許庁から貸与を受けた汎用文例リストに記載されている文例であって、AIPN辞書データ等に含まれていない文例を抽出し、そのうち特許庁が指定した文例を日本語汎用文例として調査対象とした。

さらに、「平成27年度特許審査関連情報の日英機械翻訳文の品質評価に関する調査」の評価対象のうち請求項を評価対象とした。

上記条件に従い抽出を行い、合計550文を調査対象とした。抽出した文の内訳と日本語原文の文字数の分布を下記表に示す。

表 2.1.1-1 日本語原文数

<table>
<thead>
<tr>
<th>#</th>
<th>選定元</th>
<th>選定文数</th>
<th>割合</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>拒絶理由通知書</td>
<td>145</td>
<td>26%</td>
</tr>
<tr>
<td>2</td>
<td>拒絶査定</td>
<td>81</td>
<td>15%</td>
</tr>
<tr>
<td>3</td>
<td>審決</td>
<td>40</td>
<td>7%</td>
</tr>
<tr>
<td>4</td>
<td>汎用文例</td>
<td>74</td>
<td>13%</td>
</tr>
<tr>
<td>5</td>
<td>請求項</td>
<td>210</td>
<td>38%</td>
</tr>
<tr>
<td>6</td>
<td>合計</td>
<td>550</td>
<td>100%</td>
</tr>
</tbody>
</table>
また、調査対象は分野別、書類の記載箇所別の分析を考慮し下記表の件数内訳とした。

表 2.1.1-2 分野別、記載箇所別日本語原文数

<table>
<thead>
<tr>
<th>审査部</th>
<th>拒絶査定</th>
<th>認定</th>
<th>判断</th>
<th>合計</th>
<th>拒絶理由</th>
<th>審査理由</th>
<th>審決</th>
<th>認定</th>
<th>判断</th>
<th>合計</th>
<th>総計</th>
</tr>
</thead>
<tbody>
<tr>
<td>審査第一部</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>16</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>33</td>
<td>4</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>審査第二部</td>
<td>3</td>
<td>11</td>
<td>2</td>
<td>16</td>
<td>13</td>
<td>15</td>
<td>13</td>
<td>41</td>
<td>4</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>審査第三部</td>
<td>4</td>
<td>10</td>
<td>11</td>
<td>25</td>
<td>14</td>
<td>14</td>
<td>18</td>
<td>46</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>審査第四部</td>
<td>5</td>
<td>5</td>
<td>14</td>
<td>24</td>
<td>9</td>
<td>7</td>
<td>9</td>
<td>25</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>総計</td>
<td>17</td>
<td>31</td>
<td>33</td>
<td>81</td>
<td>48</td>
<td>47</td>
<td>50</td>
<td>145</td>
<td>14</td>
<td>12</td>
<td>14</td>
</tr>
</tbody>
</table>

2.1.2 基準翻訳文の作成

項番 2.1.1「日本語原文の選定」で選定された日本語原文と、抽出された日本語汎用文例を、英語に十分精通した者により英語に手翻訳することで、正解とみなせる基準翻訳文をそれぞれ作成した。

2.2 評価対象となる機械翻訳文の作成

RBMT①、RBMT②、SMT、NMT の 4 つの機械翻訳サービスを用いて、項番 2.1.1「日本語原文の選定」で選定された日本語原文と、抽出された日本語汎用文例をそれぞれ英語に機械翻訳し、4 セットの機械翻訳文を作成した（請求項については NMT のみを実施）。RBMT ②による機械翻訳文は、特許庁が貸与する AIPN 辞書データを辞書登録し機械翻訳を作成した。SMT による機械翻訳は一文について文字数オーバーによるエラーが発生したため原文を分割の上、機械翻訳文を作成した。

2.2.1 RBMT②の翻訳環境

RBMT②での翻訳環境は、「プロフェッショナル V15 特許エディション」を使用した。

また、RBMT②では専門用語辞書を備えているため、選定された日本語原文の技術分野に応じて専門用語辞書を選択した。具体的には、特許庁から貸与を受けた AIPN 辞書に加え、項番 2.1.1 で選定された日本語原文の対象審査部毎に専門用語辞書を選択した。使用した専門用語辞書を下記表に示す。
表 2.2.1-1 対象審査部毎の専門用語辞書

<table>
<thead>
<tr>
<th>審査第一部 (物理)</th>
<th>審査第二部 (機械)</th>
<th>審査第三部 (化学)</th>
<th>審査第四部 (電気)</th>
<th>汎用文例</th>
</tr>
</thead>
<tbody>
<tr>
<td>特許</td>
<td>特許</td>
<td>化学</td>
<td>情報・通信</td>
<td>特許</td>
</tr>
<tr>
<td>情報・通信</td>
<td>電気・電子</td>
<td>特許</td>
<td>電気・電子</td>
<td>インターネット</td>
</tr>
<tr>
<td>数学・物理</td>
<td>情報・通信</td>
<td>バイオ・生物</td>
<td>特許</td>
<td>情報・通信</td>
</tr>
<tr>
<td>電気・電子</td>
<td>化学</td>
<td>情報・通信</td>
<td>化学</td>
<td>化学</td>
</tr>
<tr>
<td>学術用語</td>
<td>学術用語</td>
<td>医学・薬学（第一）</td>
<td>数学・物理</td>
<td>機械</td>
</tr>
<tr>
<td>化学</td>
<td>建築・土木</td>
<td>医学・薬学（第二）</td>
<td>学術用語</td>
<td>固有名詞（一般）</td>
</tr>
<tr>
<td>機械</td>
<td>機械</td>
<td>運輸・物流</td>
<td>建築・土木</td>
<td></td>
</tr>
<tr>
<td>固有名詞（一般）</td>
<td>数学・物理</td>
<td>学術用語</td>
<td>建築・土木</td>
<td>運輸・物流</td>
</tr>
<tr>
<td>バイオ・生物</td>
<td>建築・土木</td>
<td>固有名詞（一般）</td>
<td>電気・電子</td>
<td></td>
</tr>
<tr>
<td>医学・薬学（第一）</td>
<td>電気・電子</td>
<td>バイオ・生物</td>
<td></td>
<td></td>
</tr>
<tr>
<td>医学・薬学（第二）</td>
<td>自然・社会科学</td>
<td>数学・物理</td>
<td></td>
<td></td>
</tr>
<tr>
<td>運輸・物流</td>
<td>自動車用語</td>
<td>自然科学</td>
<td></td>
<td></td>
</tr>
<tr>
<td>自然・社会科学</td>
<td>繊維・衣料</td>
<td>医学・薬学（第一）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>自動車用語</td>
<td>固有名詞（一般）</td>
<td>医学・薬学（第二）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>固有名詞（一般）</td>
<td></td>
<td>医学・薬学（規制用語）</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.2.2 SMT の翻訳環境

SMT における翻訳環境は「JPO+NICT 特許 【日本語-英語】」を使用した。また、機械翻訳は 2016 年 12 月、2017 年 2 月時点の翻訳環境を使用した。

2.2.3 NMT の翻訳環境

NMT は 2016 年 12 月時点の翻訳環境を使用した。

2.3 機械翻訳文の精度評価

項番 2.2「評価対象となる機械翻訳文の作成」で用意した機械翻訳文について、項番 2.1.2「基準翻訳文の作成」で用意した基準翻訳文を利用して、人手による評価及び複数の自動評価を行った。

2.3.1 人手評価

特許庁が公表している「特許文献機械翻訳の品質評価手順」（以下、「特許庁評価手順」という。）に従って、人手による「内容の伝達レベル」及び「拒絶理由通知書等の重要用語の翻訳精度」の観点での「相対評価」を行った。

8 http://www.jpo.go.jp/shiryou/toushin/chousa/tokkyohonyaku_hyouka.htm
(1) 内容伝達レベル

(1-1) 審査関連書類

内容伝達レベルの評価結果は全体の傾向として、NMT が最も翻訳精度が高く、次に RBMT①、RBMT②が同等の精度、次いで SMT の順番となった。

文長別にみると、短文、中文、長文の順に翻訳精度が低くなる傾向がすべての機械翻訳サービスでみられた。機械翻訳サービスの比較では短文、中文、長文とも全体の傾向と同様に NMT が最も翻訳精度が高く、特に短文では内容伝達レベルの最も高い評価 5 が短文の半数以上を占める結果となった。

審査部別にみると、翻訳精度の高い順に審査第二部、審査第三部、審査第一部、審査第四部となった。特に審査第四部は他の審査部に比べ翻訳精度が低い傾向がみられた。そこで翻訳精度に関連する文長の割合を審査部別に調べると下記表に示すように他の審査部に比べ長文が占める割合が多いことが分かった。また、RBMT①の翻訳結果を見ると、原文の解析エラーを表す記号『[]』、『- -』などや、未知語を表す記号『**』を含む文が他の審査部に比べ多くみられた。

表 2.3.1-1 審査部別文長の割合

<table>
<thead>
<tr>
<th>審査部</th>
<th>短文</th>
<th>中文</th>
<th>長文</th>
</tr>
</thead>
<tbody>
<tr>
<td>審査第一部</td>
<td>32.2%</td>
<td>35.6%</td>
<td>32.2%</td>
</tr>
<tr>
<td>審査第二部</td>
<td>26.9%</td>
<td>32.8%</td>
<td>40.3%</td>
</tr>
<tr>
<td>審査第三部</td>
<td>29.6%</td>
<td>38.3%</td>
<td>32.1%</td>
</tr>
<tr>
<td>審査第四部</td>
<td>20.3%</td>
<td>27.1%</td>
<td>52.5%</td>
</tr>
</tbody>
</table>

表 2.3.1-2 審査部別 RBMT①の原文解析エラーの割合

<table>
<thead>
<tr>
<th>審査部</th>
<th>エラーなし</th>
<th>エラーあり</th>
</tr>
</thead>
<tbody>
<tr>
<td>審査第一部</td>
<td>76.3%</td>
<td>23.7%</td>
</tr>
<tr>
<td>審査第二部</td>
<td>70.1%</td>
<td>29.9%</td>
</tr>
<tr>
<td>審査第三部</td>
<td>77.8%</td>
<td>22.2%</td>
</tr>
<tr>
<td>審査第四部</td>
<td>52.5%</td>
<td>47.5%</td>
</tr>
</tbody>
</table>

審査書類の記載内容別にみると、判断、対比、認定の順となったが、評価値の差は比較的小さい結果となった。

書類別にみると、拒絶理由通知と拒絶査定がほぼ同等の翻訳精度となり、審決、汎用文例の順の評価結果となった。汎用文例においては、SMT の翻訳精度が特に低い結果となった。

⑨ 評価対象の日本語文の 1〜113 文字を短文、114〜226 文字を中文、227 文字以上を長文とした。
（ア）全体

図 2.3.1-1 内容伝達レベル

（イ）文長別

図 2.3.1-2 内容伝達レベル（短文）

図 2.3.1-3 内容伝達レベル（中文）

図 2.3.1-4 内容伝達レベル（長文）

各内容伝達レベルのグラフ内の数値は評価者 2 名の評価結果を合算した値。
(ウ) 審査部別

図 2.3.1-5 内容伝達レベル（審査第一部）

図 2.3.1-6 内容伝達レベル（審査第二部）

図 2.3.1-7 内容伝達レベル（審査第三部）

図 2.3.1-8 内容伝達レベル（審査第四部）
（エ）記載内容別

図 2.3.1-9 内容伝達レベル（対比）

図 2.3.1-10 内容伝達レベル（認定）

図 2.3.1-11 内容伝達レベル（判断）
図 2.3.1-12 内容伝達レベル（拒絶理由通知）

図 2.3.1-13 内容伝達レベル（拒絶査定）

図 2.3.1-14 内容伝達レベル（審決）

図 2.3.1-15 内容伝達レベル（汎用文例）
(1-2) 請求項

本調査では平成27年度調査で調査対象とした請求項を用い、NMTの内容伝達レベル評価及び自動評価を行った。内容伝達レベルの評価結果を平成27年度調査の評価結果と比較すると評価5の割合が増加したが、それ以上の割合で評価1の件数も増加している。また、文長別に平成27年度と比較すると、短文は評価5が大きく増加した一方、長文では評価5が0件に減少し、評価1が大幅に増加している。中文は評価1と2の増減はあるものの、評価3以上の件数では、ほぼ変動がなかった。

図2.3.1-13 内容伝達レベル（全体）

図2.3.1-14 内容伝達レベル（文長別）

文長は1～77字を短文、78～145字を中文、146字以上を長文とした。「平成27年度特許審査関連情報の日英機械翻訳文の品質評価に関する調査報告書」より
平成 28 年度の翻訳品質が平成 27 年度より向上している例を以下に示す。

| 原文 | 前記内周保護フード部の鼻当て部が当該内周保護フード部を構成する樹脂材料よりも柔軟な樹脂材料から構成されている請求項 1 ないし 6 のいずれか 1 項に記載のフード付き眼鏡。
| 平成 27 年度 (内容伝達レベル 1) | Any and hooded eyeglasses as claimed in the inner protective to nose pad portion of the receptacle is no claim 1 is composed of a flexible plastic material than the resin material constituting the inner protective hood portion 6. |
| 平成 28 年度 (内容伝達レベル 4.5) | The hooded glasses according to any one of claims 1 to 6, wherein the nose pad of the inner peripheral protective hood portion is made of a resin material that is softer than the resin material constituting the inner peripheral protective hood portion. |

平成 27 年度の翻訳結果は請求項番号 1 と 6 が分断されるなど、全体的に文意が伝わらなくなっている。一方、平成 28 年度の翻訳結果はほぼ原文の内容伝達が可能な訳文となっていた。

平成 28 年度の翻訳品質が平成 27 年度より低下している例を以下に示す。

| 原文 | 金属粉末とゲル化剤と球状樹脂微粒子を含有する筆記具用インキ組成物であって、せん断速度 1000 s−1 における粘度（V1）が 35 mPa · s 以下であり、せん断速度 0.01 s−1 における粘度（V2）が 100 〜 185 Pa · s であり、前記金属粉末の平均粒径が 5 〜 15 μm であり、前記球状樹脂微粒子の平均粒径が 0.05 〜 1 μm である、筆記具用インキ組成物。
| 平成 27 年度 (内容伝達レベル 3.5) | A writing instrument ink composition containing the spherical resin fine particles metal powder and a gelling agent, The viscosity at a shear rate of 1000 s−1 (V1) is not more than 35mPa · s, The viscosity at a shear rate of 0.01s−1 (V2) is a 100−185Pa · s, The average particle diameter of the metal powder is 5~15μm, The average particle diameter of the spherical resin particles is the 0.05~1μm, for writing instruments ink composition. |
| 平成 28 年度 (内容伝達レベル 1) | (V 1) at a shear rate of 1000 s -1 is 35 mPa · s or less, and viscosity at a shear rate of 0.01 s -1 is 1 m 2 / s or less at a shear rate of 1,000 s -1, the ink composition for writing instruments comprising a metal powder, a gelling agent and spherical resin fine particles, (V2) of 100 to 185 Pa · s, the average particle size of the metal powder is 5 to 15 μm, and the average particle diameter of the spherical resin fine particles is 0.05 to 1 μm. |
平成28年度の翻訳結果は原文の末尾「筆記用インキ組成物」が訳出されていない点、文中の「・・・のおける粘度（V2）・・・」部分が（V2）の前で分断され訳出される点で内容伝達レベルが低い訳となっていた。

（2）重要用語

選定した59語の重要用語の評価結果を機械翻訳サービス別にみると、RBMT①とRBMT②の結果が同等で一番精度が高く、SMTとNMTに比べて良い評価結果が得られた。また、評価結果を書類別にみると、汎用文例から抽出した重要用語のSMTが他の機械翻訳サービスに比べ低い評価結果となった。

平成27年度に行った「重要技術用語」の評価結果と比較すると、本調査ではルールベース機械翻訳（RBMT①、RBMT②）の評価が高くなった。一方平成27年度調査では、機械翻訳サービスの間には大きな差はみられなかった。この傾向の違いは、本調査の評価対象が審査書類固有の用語を対象としたのに対し、平成27年度調査では技術用語を評価対象とした違いによるものと考えられる。ルールベース機械翻訳は従来より審査書類固有の用語をユーザ辞書へ登録し利用したことにより評価が高くなった一方、統計的機械翻訳は審査書類固有の用語は対訳コーパスが少ない審査書類に出現する用語であるため、学習データ不足により評価が低くなったと考えられる。

図2.3.1-15 重要用語評価結果（全体）

図2.3.1-16 重要技術用語評価結果

（「平成27年度特許審査関連情報の日英機械翻訳文の品質評価に関する調査報告書」より）
図 2.3.1-17 重要用語評価結果（拒絶理由）

図 2.3.1-18 重要用語評価結果（拒絶査定）

図 2.3.1-19 重要用語評価結果（審決）

図 2.3.1-20 重要用語評価結果（汎用文例）
重要用語評価が低かった用語（評価 D）の一例を以下に示す。

<table>
<thead>
<tr>
<th>機械翻訳サービス</th>
<th>用語</th>
<th>参考訳</th>
<th>翻訳結果</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMT</td>
<td>発明の発明特定事項</td>
<td>matters used to define the invention</td>
<td>disclosure specific matters of the invention</td>
<td>原文に disclosure の意味なし</td>
</tr>
<tr>
<td></td>
<td>特許法施行規則</td>
<td>Ordinance for Enforcement of the Patent Act</td>
<td>C.F.R.</td>
<td>翻訳結果はアメリカの連邦規則集の意</td>
</tr>
<tr>
<td></td>
<td>同日出願</td>
<td>Application on the Same Date</td>
<td>Application</td>
<td>同日の意がない</td>
</tr>
<tr>
<td></td>
<td>冒認出願</td>
<td>Misappropriated Application</td>
<td>冒認 Application</td>
<td>冒認が未知語</td>
</tr>
<tr>
<td>NMT</td>
<td>発明特定事項</td>
<td>matters used to define the invention</td>
<td>matter-specifying matters</td>
<td>発明の意がない</td>
</tr>
<tr>
<td></td>
<td>甲第１３号証</td>
<td>Demandant’s Exhibit No.13</td>
<td>Part XIII</td>
<td>甲の意がない</td>
</tr>
<tr>
<td></td>
<td>本願補正発明</td>
<td>Amended Invention</td>
<td>the present invention</td>
<td>補正の意がない</td>
</tr>
<tr>
<td></td>
<td>冒認出願</td>
<td>Misappropriated Application</td>
<td>Application for Acquisition</td>
<td>冒認の意がない</td>
</tr>
</tbody>
</table>

2.3.2 自動評価

代表的な自動評価基準である BLEU、NIST 及び近年訳文の妥当性評価で人手評価と相関が高いとして注目される RIBES の 3 つの自動評価手法により、自動評価を行った。

(1) 審査関連書類

全体の傾向は、内容伝達レベルの評価結果と同様に NMT が他の機械翻訳サービスより翻訳精度が高い結果となった。この傾向は、3 つの自動評価手法すべてにおいて共通の傾向だった。自動評価手法別に傾向を見ると、BLEU と NIST は似た評価結果となった。一方、RIBES は、BLEU、NIST と比べると異なる傾向がみられた。例えば BLEU の審査部別グラフを見ると、NMT は各審査部の評価値の差が大きいのに対して、RIBES の審査部別グラフでは審査部間の差が小さい結果となった。また、NMT 以外の傾向を見ると、BLEU の値については RBMT①、RBMT②、SMT の差は小さいが、RIBES の値については SMT が RBMT①、RBMT②より高い傾向がみられた。
図 2.3.2-1 自動評価 (BLEU)

図 2.3.2-2 自動評価 (NIST)

図 2.3.2-3 自動評価 (RIBES)
次に、翻訳精度の高かった NMT について、BLEU 値の上位 10 件の傾向を分析した。BLEU の評価結果は 0 から 1 の間の値となり、1 が最も翻訳精度が高いことを意味する。NMT の BLEU 値の上位 10 件を見ると 0.9573 から 0.7749 となり、いずれも非常に高い値となった。一般に短文ほど翻訳の難易度が低いと考え、この 10 件の日本語原文の長さを調べると、10 件中 8 件が 100 文字以下で、審査関連書類としては比較的短文が多くを占めるものの、232 文字の長文も含まれており、長文であっても翻訳品質が高いものが存在した。

<table>
<thead>
<tr>
<th>日本語原文</th>
<th>NMT</th>
<th>BLEU 値</th>
</tr>
</thead>
<tbody>
<tr>
<td>したがって、請求項１－３に係る発明と引用文献１に記載された発明との間には、実質的な差異がない。</td>
<td>Therefore, there is no substantial difference between the invention according to claims 1 to 3 and the invention described in cited reference 1.</td>
<td>0.9573</td>
</tr>
<tr>
<td>したがって、本願請求項１－１に係る発明は、引用文献１に記載された発明である。</td>
<td>Therefore, the invention according to claim 1-11 of the present application is the invention described in the cited reference 1.</td>
<td>0.9554</td>
</tr>
<tr>
<td>本願請求項１，３に係る発明と比較しても差異が無い。</td>
<td>There is no difference from the invention according to claims 1 and 3 of the present application.</td>
<td>0.8465</td>
</tr>
<tr>
<td>日本語原文</td>
<td>NMT</td>
<td>BLEU値</td>
</tr>
<tr>
<td>------------</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>引用文献1には、人工炭酸泉システムにおいて、給湯機能及び暖房機能を有する給湯暖房用熱源機と、給湯配管と、炭酸泉供給ユニットと、炭酸泉供給ユニットに炭酸ガスを供給可能とする炭酸ガス供給手段と、追焚配管と、炭酸ガス溶解部と、交換部と、炭酸泉給湯系統と、通常給湯系統と、通常追焚系統と、炭酸泉添加追焚系統を備える点（例えば、[0033]-[0035]、[0041]、[0049]、[0056]-[0060]、[0080]-[0082]，図1-2等参照）等が示されている。</td>
<td>Cited document 1 discloses an artificial carbonated spring system including a hot water supply heating heat source device having a hot water supply function and a heating function, a hot water supply pipe, a carbonated spring supply unit, a carbonic acid gas supply means enabling supply of carbon dioxide gas to a carbonated spring supply unit, , [0033] - [0035] in that it is provided with a refining piping, a carbon dioxide gas dissolving section, an exchanging section, a carbonated spring hot water supply system, a normal hot water supply system, a normal heating line and a carbonated spring added heating line, , [0041], [0049], [0056] - [0060], [0080] - [0082], see FIG. 1-2 and the like), and the like.</td>
<td>0.7985</td>
</tr>
</tbody>
</table>
(2) 請求項

請求項の自動評価は、BLEU 値は平成 27 年度に比べ 0.05 ポイント程度上回り、NIST 値は逆に 0.10 ポイント下回った。RIBES 値は 0.16 ポイント上回る結果となった。また、一文毎に評価値を比べると BLEU、RIBES において平成 28 年度の翻訳精度が高い傾向がみられた。

<table>
<thead>
<tr>
<th>評価手法</th>
<th>平成 28 年度平均値</th>
<th>平成 27 年度平均値</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLEU</td>
<td>0.338</td>
<td>0.285</td>
</tr>
<tr>
<td>NIST</td>
<td>7.036</td>
<td>7.136</td>
</tr>
<tr>
<td>RIBES</td>
<td>0.758</td>
<td>0.595</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>評価手法</th>
<th>平成 28 年度の自動評価が向上した文数</th>
<th>平成 28 年度の自動評価が低下した文数</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLEU</td>
<td>141</td>
<td>69</td>
</tr>
<tr>
<td>NIST</td>
<td>100</td>
<td>110</td>
</tr>
<tr>
<td>RIBES</td>
<td>183</td>
<td>27</td>
</tr>
</tbody>
</table>

また、平成 28 年度評価が向上したものの多くは、下記表に示すように全ての評価手法で評価が向上する傾向がみられた。

<table>
<thead>
<tr>
<th>全ての評価手法で平成 28 年度評価が向上</th>
<th>文数</th>
</tr>
</thead>
<tbody>
<tr>
<td>全ての評価手法で平成 28 年度評価が低下</td>
<td>10</td>
</tr>
</tbody>
</table>
3. 精度評価結果の分析

3.1 日英対訳コーパスの作成

下記の特許庁貸与物から日英対訳コーパスを作成した。そして作成した日英対訳コーパスの対応付けが適切かどうかについて、英語に十分精通した者による人手確認を行った。作成件数を下記表に示す。

<table>
<thead>
<tr>
<th>#</th>
<th>コーパス作成元</th>
<th>件数(行)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>審査基準</td>
<td>5,647</td>
</tr>
<tr>
<td>2</td>
<td>審査ハンドブック</td>
<td>2,349</td>
</tr>
<tr>
<td>3</td>
<td>PCT ハンドブック</td>
<td>3,498</td>
</tr>
<tr>
<td>4</td>
<td>合計</td>
<td>11,494</td>
</tr>
</tbody>
</table>

3.2 定型文、用語登録の検討

3.2.1 翻訳精度低下の原因の分析

(1) 分析用日本語原文

機械翻訳サービスの共通課題を分析するため、内容伝達レベルが 3 未満の文を抽出し、分析用日本語原文として分析を行った。

<table>
<thead>
<tr>
<th>類型</th>
<th>文数</th>
<th>構成比</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMT のみ内容伝達レベル 3 未満</td>
<td>81</td>
<td>23.8%</td>
</tr>
<tr>
<td>NMT のみ内容伝達レベル 3 以上</td>
<td>73</td>
<td>21.5%</td>
</tr>
<tr>
<td>全ての機械翻訳サービスで内容伝達レベル 3 以上</td>
<td>65</td>
<td>19.1%</td>
</tr>
<tr>
<td>全ての機械翻訳サービスで内容伝達レベル 3 未満</td>
<td>55</td>
<td>16.2%</td>
</tr>
<tr>
<td>SMT と NMT のみ内容伝達レベル 3 以上</td>
<td>23</td>
<td>6.8%</td>
</tr>
<tr>
<td>RBMT①と RBMT②ののみ内容伝達レベル 3 以上</td>
<td>12</td>
<td>3.5%</td>
</tr>
<tr>
<td>SMT のみ内容伝達レベル 3 以上</td>
<td>5</td>
<td>1.5%</td>
</tr>
<tr>
<td>NMT のみ内容伝達レベル 3 未満</td>
<td>4</td>
<td>1.2%</td>
</tr>
<tr>
<td>その他</td>
<td>22</td>
<td>6.5%</td>
</tr>
</tbody>
</table>

以下、RBMT②、SMT の精度が低い原因について分析を行った。

(2) RBMT②

RBMT②の翻訳文を分析した結果、以下に示す要因による翻訳精度の低下がみられた。
(2-1) RBMT②による原文分割
評価が低かった文の多くは、RBMT②が独自に文を分割しているものが多くみられた。分割された部分を見ると、原文の読点の位置や隅付き括弧『【】』で分割される傾向がみられた。分割は、読点すべてで分割するのではなく、文長などRBMT②内部にあるルールで分割される。また、隅付き括弧『【】』は、本来公報の見出しや標題としての使用を前提とし、文中での使用を想定しない仕様となっているとみられ、隅付き括弧『 【】 』の単位で原則文分割される。分割例と分割後の翻訳結果例を以下に示す。

(2-2) 訳語誤り・未知語

(2-3) 変数辞書の未登録

(2-4) パターン辞書の未登録

(2-5) 訳抜け

(2-1) RBMT②による原文分割
評価が低かった文の多くは、RBMT②が独自に文を分割しているものが多くみられた。分割された部分を見ると、原文の読点の位置や隅付き括弧『【】』で分割される傾向がみられた。分割は、読点すべてで分割するのではなく、文長などRBMT②内部にあるルールで分割される。また、隅付き括弧『【】』は、本来公報の見出しや標題としての使用を前提とし、文中での使用を想定しない仕様となっているとみられ、隅付き括弧『 【】 』の単位で原則文分割される。分割例と分割後の翻訳結果例を以下に示す。

(ア) 読点で区切られるケース
引用文献1には、「定着装置」に関する発明であり、本願請求項1に係る発明と引用文献1に記載された「定着装置（15）」を比較すると、▼引用文献1に記載された「定着装置（15）」を構成する「定着ローラ（15a）」、▼「加圧ローラ（15b）」、「定着ベルト（25）」及び「加熱部材（20）」（特に、▼公報[0104]段～[0105]段、[0186]段～[0195]段及び[図11]参照。）は、本願請求項1に係る発明における「定着ローラ」、「加圧ローラ」、「定着ベルト」及び「加熱部」にそれぞれ相当している。

If it is the invention about an "anchorage device" and "the anchorage device (15)" described to the invention concerning claim 1 in this application and cited document 1 is compared with cited document 1,"The fixing roller (15a)" which constitutes "the anchorage device (15)" described to cited document 1,"A pressurizing roller (15b)," fixing belts (25)," and a heating component (20)" (especially)Refer to gazette [0104] stage - [0105] stage and [0186] stage - [0195] stage and [Fig.11]. It is equivalent to the "fixing roller" in the invention concerning claim 1 in this application, a "pressurizing roller", "fixing belts", and a "heating part", respectively.

原文はRBMT②により、上記の▼の位置で4つに分割され、分割毎に翻訳される。この分割により、機械翻訳結果は以下の点で内容伝達が行われなくなる。
①引用文献に記載されているものが「定着装置（15）」を構成する「定着ローラ（15a）」だけの意味となってしまう。
②分割された原文『「加圧ローラ （15b）」、・・・(特に、』が翻訳文のなかで宙に浮いた状態になってしまう。
③分割された原文『公報[0104]段〜・・・』部分は意味の取れない日本語の翻訳となってしまう。
引用例の段落▼
【0027】▼
、段落▼
【0036】▼
等を参照すると、受信側のメールサーバは、マルチメディアイメールに含まれる音声と動画像からアイコンを作成して、音声と動画像をアイコンに置き換えるものである。

The paragraph of a Cited Document [0027] If 等 is referred to, the mail server of a receiving side will create an icon from the sound contained in a multimedia mail, and video, and will replace a sound and video to an icon.

原文は RBMT②により、上記▼の位置で5つに分割され、分割毎に翻訳される。
この分割により、機械翻訳結果は以下の点で内容伝達が行われなくなる。
①「引用例の段落」「【0027】」「段落」「【0036】」がそれぞれ個別に翻訳されるため、繋がりのない逐語訳となってしまう。
②最後の分割された原文「等を参照すると、受信側のメールサーバは、〜・・・」部は「等」に係る部分がない状態での翻訳となっててしまうため、「等」が未知語となるなど意味が取れない翻訳となってしまう。

(2-2) 釈語誤り・未知語
用語の釈語誤りとして、「甲」が「shell (甲羅)」、「カ」が「mosquito (蚊)」と誤訳されもののがみられた。

甲1カ：甲1エの「表面検査用カメラ11により表面を検査された後、・・・裏面検査用カメラ13により裏面を検査される。」、甲1オの「印章胴15で印刷される位置までの間で印刷の良否が確実に判断され」の各記載によれば、甲1アの「輪転印刷機」が、表面検査用カメラ11及び裏面検査用カメラ13による検査に基づき印刷の良否を判断するための判断手段を備えていることは明らかである。

Shell1 mosquito : After the surface was inspected with camera 11 for "surface analyses of shell 1エ... A back surface is inspected with back surface checking camera 13. According to each description by "the quality of printing is judged reliably before the position printed on seal trunk 15" of " and shell 1オ,The "rotary press" of have [the decision means for judging the quality of printing based on the inspection with camera 11 for surface analyses and back surface checking camera 13] of shell 1ア is clear.

「甲」を shell、「カ」を mosquito と誤訳
(2-3) 変数辞書の未登録（請求項、引用文献や図などの様々な引用表現への対応）

（1）請求項1、4-5に係る発明は、電界吸収型変調器を備えている。

(1) Claim 1 and the invention concerning 4-5 are provided with the electric field absorption type modulator.

頻出表現、「請求項※に係る発明」は、下図の辞書登録一覧に示すように「invention according to <1>」が辞書登録済であるが、この登録では上記例の「請求項1、4-5に係る発明」には辞書の訳が適用されず、かつ係り受けも誤った訳が出力される。

例にある日本語を適切に翻訳するためには、「請求項※、※-※に係る発明」「invention according to <1> and <2> - <3>」の登録が必要になる。

なお、可変部分は上記例以外にもさまざまなバリエーションが考えられるため、それらにも対応する必要がある。

<table>
<thead>
<tr>
<th>見出し</th>
<th>登録モード</th>
<th>言語</th>
<th>名前</th>
<th>話順1</th>
<th>話順2</th>
</tr>
</thead>
<tbody>
<tr>
<td>請求項1</td>
<td>マージ</td>
<td>名前</td>
<td>the object of the request/demand and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>請求項2</td>
<td>マージ</td>
<td>名前</td>
<td>Claim</td>
<td></td>
<td></td>
</tr>
<tr>
<td>請求項3</td>
<td>マージ</td>
<td>名前</td>
<td>Notification concerning the time of filing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>請求項4</td>
<td>マージ</td>
<td>名前</td>
<td>the grounds for the request/demand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>請求項5</td>
<td>マージ</td>
<td>名前</td>
<td>Claim <1></td>
<td></td>
<td></td>
</tr>
<tr>
<td>請求項6</td>
<td>マージ</td>
<td>名前</td>
<td>Claim <2></td>
<td></td>
<td></td>
</tr>
<tr>
<td>請求項7</td>
<td>マージ</td>
<td>名前</td>
<td>Claim <3></td>
<td></td>
<td></td>
</tr>
<tr>
<td>請求項8</td>
<td>マージ</td>
<td>名前</td>
<td>Claim <4></td>
<td></td>
<td></td>
</tr>
<tr>
<td>請求項9</td>
<td>マージ</td>
<td>名前</td>
<td>Claim <5></td>
<td></td>
<td></td>
</tr>
<tr>
<td>請求項10</td>
<td>マージ</td>
<td>名前</td>
<td>Claim <6></td>
<td></td>
<td></td>
</tr>
<tr>
<td>請求項11</td>
<td>マージ</td>
<td>名前</td>
<td>Claim <7></td>
<td></td>
<td></td>
</tr>
<tr>
<td>請求項12</td>
<td>マージ</td>
<td>名前</td>
<td>Claim <8></td>
<td></td>
<td></td>
</tr>
<tr>
<td>請求項13</td>
<td>マージ</td>
<td>名前</td>
<td>Claim <9></td>
<td></td>
<td></td>
</tr>
<tr>
<td>請求項14</td>
<td>マージ</td>
<td>名前</td>
<td>Claim <10></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

図 3.2.1-1 辞書登録一覧

これらの引用文献5、8に記載された発明は当業者における周知技術であり、引用文献1の発明に適用できるものである。

These cited document 5 and the invention described to 8 are the well-knowns art in a person skilled in the art, and it can apply it to the invention of cited document 1.

「引用文献5、8に記載された発明」部の翻訳が「invention described in Cited documents 5 and 8」とならずに「cited document 5 and the invention described to 8」と係り受けを誤ってしまっている。

通常、「引用文献※、※」や「引用文献※」のような頻出の表現は、変数登録をせずとも問題なく翻訳できる。しかし、貸与を受けたユーザ辞書に「引用文献※」「cited document <1>」の変数登録があり、この登録により例示の係り受け誤りが生じていることが判明した。この「引用文献※」「cited document <1>」の登録を削除することにより、この係り受け誤りは解消される。「請求項※」「Claim <1>」のケースも同様であり、削除する。
(2-4) パターン辞書の未登録

パターン辞書にマッチしなかったために、翻訳品質が低くなったもの。

図 3.2.1-2 の上段が評価対象文の文末表現「・・・ことは、当業者にとって容易に想到し得ることである。」は、一見、類出表現なので、パターン辞書の訳が採用されるはずが、採用されていなかった。下図「登録済パターン」を確認すると、類似表現「・・・ことは、当業者が容易に想到し得たことである。」が登録されていたものの、前述の文末表現はパターン辞書に登録されていなかった。

| 1 | そうすると、引用発明の「記録媒体 2」を紫外光が透過できる素材から透明または半透明とすることは、当業者にとって容易に想到し得ることである。 | It is that transparency or supposing that it is translucent easily conceive "recording medium 2" of a cited invention for a person skilled in the art from the material which ultraviolet radiation can transmit when doing it so. |
| 2P | そうすると、引用発明の「記録媒体 2」を紫外光が透過できる素材から透明または半透明とすることは、当業者が容易に想到し得たことである。 | A person skilled in the art could have conceived of making "recording medium 2" of a cited invention transparent or translucent from the material which ultraviolet radiation can transmit, if it does so. |

図 3.2.1-2 パターン辞書にマッチしない文 (上段)、マッチする文 (下段)

図 3.2.1-2 の下段は評価対象文をパターン辞書に適合するように原文を修正し、翻訳した結果である。翻訳した結果を見ると、パターンに適合することで原文の「引用発明の・・・半透明とする」部分がパターン辞書の変数として翻訳されるため、パターンに適合しない場合に比べ翻訳品質は向上したことが確認できた。

図 3.2.1-3 登録済パターン
(2-5) 訳抜け

調査対象中、16文(RBMT②)、20文(RBMT①)で訳抜けがあった。「また、」「さらに、」「なお、」などの接続表現に関する訳抜けがみられた。

さらに、引用文献1に記載された発明は、図9から、LEDモジュールをケーブル組立体で連結するものであるので、本願の請求項3に係る発明の構成も備えている。

From Fig.9, since the invention described to cited document 1 connects a LED module with a cable assembly, it is provided also with the composition of an invention related to the Claim 3 of this application.

また、引用文献1には、請求項2に係る発明で特定した事項（引用文献1：例えば、段落[0040]等）が記載されている。

To cited document 1, matters specified by the invention according to claim 2, such as cited document 1: [0040], for example, a paragraph etc., are described.

(3) SMT

SMTの翻訳文を分析した結果、以下に示す要因による翻訳精度低下がみられた。

<table>
<thead>
<tr>
<th>(3-1)</th>
<th>語順が不適切</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3-2)</td>
<td>湧き出し</td>
</tr>
<tr>
<td>(3-3)</td>
<td>訳抜け</td>
</tr>
<tr>
<td>(3-4)</td>
<td>訳語類の訳出不備</td>
</tr>
<tr>
<td>(3-5)</td>
<td>文頭の項番</td>
</tr>
<tr>
<td>(3-6)</td>
<td>訳語誤り</td>
</tr>
</tbody>
</table>

(3-1) 語順が不適切

SMTの内容伝達レベルの低い文を分析すると、訳語の語順が不適切なため、係り受けが誤った訳文がみられた。統計的機械翻訳は、原文をフレーズ単位に分割し、分割されたフレーズ単位に翻訳を行い、翻訳対象言語の語順に並び替えを行う。この並び替えが適切に行われないと、文中の用語の訳は正しくとも、意味が適切に伝わらなくなる。特に日本語と英語との間の翻訳では、両言語間の語順が大きく異なることから語順の並び替え精度が課題となっている。SMTではこの語順並び替えについて翻訳前に日本語を英語の語順に近い順序に並び替え（事前並び替え）を行っている。事前並び替えの例を以下に示す。
そこで、語順並び替えの観点から、精度の低かった文を調査した。下記例は内容伝達レベルが最低ランクの1と評価された文である。

| 原文 | したがって、発光装置自体のサイズを維持しつつ、チップの配置、及び、ワイヤの延伸を変更することが可能であると認められるから、上記の適用を阻害する要因は、存在しない。
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>訳文</td>
<td>Thus, while maintaining the size of the light emitting device itself, the layout of the chip, and it is possible to change the orientation of the wire hinders application of the above does not exist.</td>
</tr>
</tbody>
</table>

上記例の語順並び替え結果を見ると、並び替え後の日本語毎に翻訳した結果を連結した結果となっていた。そのため、本来であれば「発光装置・・・認められるから」部分の係り受けが正しく解釈された訳出とならず、結果意味不明な翻訳結果となった。

以上の現象を踏まえ、上記例から係り受けに影響がありそうな読点を原文から削除し翻訳したところ、翻訳品質の改善が確認できた。以上から、SMTにおいては、原文の過剰な読点は語順並び替えに悪影響を及ぼす可能性があることが分かった。
<table>
<thead>
<tr>
<th>原文 (読点削除後)</th>
<th>したがって、発光装置自体のサイズを維持しつつチップの配置及びワイヤの延伸を変更することが可能であると認められるから、上記の適用を阻害する要因は存在しない。</th>
</tr>
</thead>
<tbody>
<tr>
<td>読点並び替え結果</td>
<td>したがって、からられる認めとこと可能であるする変更配置のチップ及び延伸のワイヤつつ維持サイズの発光装置自体、要因thatする阻害適用の上記はないし存在。</td>
</tr>
<tr>
<td>訳文</td>
<td>Accordingly, it can be seen that it is possible to change the arrangement of the chips and the stretching of the wire while maintaining the size of the light emitting device itself, the factors that inhibit the application does not exist.</td>
</tr>
</tbody>
</table>

(3-2) 湧き出し

拒绝理由通知書などでは墨付き括弧『【】』と数字を使い、公報上の段落番号を表現することが多い。段落番号は[0005]などと翻訳されるべきだが、学習データの誤りにより下記下線で示すような「SOLUTION」が余計に訳出されるものがあった。

例えば、引用文献2の段落【0005】や【0034】に、次のことが開示されているように、圧力情報の無線送信頻度を減少させて、電力消費量を低減することは、タイヤの圧力測定においては、本件出願の優先日前の単なる慣用技術でしかないからである。

For example, **SOLUTION 0005 and SOLUTION 0034** of Patent Literature 2, paragraph, the following has been disclosed, it is possible to reduce the frequency of data transmission using RF pressure information, reducing the power consumption, in a tire pressure measurement, there is only a mere conventional art before the priority date of the present application.

(3-3) 訳抜け

調査対象中、33文で訳抜けがあった。下記例は1文中3か所の訳抜けがあり、内容伝達レベルの評価も最低ランクの1であった。

Therefore, as described in the cited reference 1 or 2, the description of Patent Literature 3 to 7, the suction roller is adopted, the present invention according to the claims 1 2, it is easy to those skilled in the art.
(3-4) 記号類の訳出不備

本調査の対象文は文内で対象とする請求項番号の範囲を表現するために、「請求項 1、2、3」、「請求項 1-3」といった表現が使われる。このような表現について下記例に示すように数字の間の記号の欠落が多くみられた。

- (1) 請求項 1、4-5 に係る発明は、電界吸収型変調器を備えているのに対して、引用文献 1 に記載されている光半導体素子は、電界吸収型変調器を備えていない点（以下、「相違点 1」という。）。

The (1) claims 1-5 to the electric field absorption type modulator, optical semiconductor element described in Patent Literature 1, (hereinafter referred to as "differences 1"). does not comprise an electro-absorption modulator.

(3-5) 文頭の項番

内容伝達レベルの観点からは、さほど重要でないが文頭の項番「(1)」「(a)」「(ア)」などが文頭に訳出されない事象がみられた。また、「(ア)」は前述の訳語の位置に加え訳語が「arm」と一見理解できない訳語となった。

- (ア) 本件発明 1 と甲 1 発明とを対比すると、甲 1 発明の「冷媒」、「コルゲートフィン 2」、「チューブエレメント 3」、「ルーバ 15」は、その構造及び機能から、それぞれ、本件発明 1 の「空気冷却用の流体」、「フィン (2)」、「チューブ (1)」、「鎧窓状のルーバ (2 c)」に相当する。

When present 1 and vamp 1 and comparing "refrigerant" instep 1, "corrugated fins 2", "tube elements 3", "louver 15" from its structure and function, the present invention 1 "fluid for cooling air", "fin (2)", "tube (1)" corresponds to "louvers (2 c)".

(3-6) 訳語誤り

審決に出現する用語の語誤りとして、「甲」が「vamp（足の甲）」と誤訳されたものがみられた。

- (ア) 本件発明 1 と甲 1 発明とを対比すると、甲 1 発明の「冷媒」、「コルゲートフィン 2」、「チューブエレメント 3」、「ルーバ 15」は、その構造及び機能から、それぞれ、本件発明 1 の「空気冷却用の流体」、「フィン (2)」、「チューブ (1)」、「鎧窓状のルーバ (2 c)」に相当する。

When (arm) present 1 and vamp 1 and comparing "refrigerant" instep 1, "corrugated fins 2", "tube elements 3", "louver 15" from its structure and function, the present invention 1 "fluid for cooling air", "fin (2)", "tube (1)" corresponds to "louvers (2 c)".
(4) NMT

NMT の翻訳文を分析した結果、以下に示す要因による翻訳精度低下がみられた。

<table>
<thead>
<tr>
<th>(4-1)</th>
<th>湧き出し</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4-2)</td>
<td>訳抜け</td>
</tr>
</tbody>
</table>

(4-1) 湧き出し
原文の「平成 28 年」の訳が「2880」となり、原文にはない「80」が訳出された。

<table>
<thead>
<tr>
<th>平成28年</th>
<th>12月6日付け拒絶理由通知書においては、補正前の請求項1に係る発明に「A A」という特別な技術的特徴が発見されたことが記載されている。</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the notice of reasons for refusal dated December 6, 2880, it is stated that a special technical feature "AA" was discovered in the invention according to claim 1 before amendment.</td>
<td></td>
</tr>
</tbody>
</table>

不明な記号文字列「##EQU1##whereEUQ1##」が訳出された。

| 引用文献1 (特開2003-331841号公報の、【請求項1】【請求項3】【0015】-【0017】【0020】【0034】【0054】【0055】など参照。)や、引用文献2 (特開2009-259798号公報の、【請求項1】【請求項3】【0020】【0022】【0023】【0025】【0026】【0028】【0029】【0036】【0037】【0054】【0071】など参照。)には、平成28年1月29日付け刊行物等提出書に記載されているとおりのA1/Ni比が2〜6をとり得る正極活物質の発明が記載されていると認められる。 |
| Refer to Reference 1 (Japanese Patent Application Laid-Open No. 2003-331841, see Claim 1, Claim 3, etc.), and reference [2 (refer to claim 1 of Japanese Unexamined Patent Application Publication No. 2009-259798, claim 3): ##EQU1## where ##EQU1##), Etc.), an invention of a positive electrode active material which can have an Al / Ni ratio of 2 to 6 as described in the publication of January 29, 1998, etc. is described It is recognized. |
訳抜け
調査対象中、30文で訳語抜けの指摘が評価者よりあった。NMTの訳抜けは、SMTに比べ長い（句レベル）訳抜けがみられた。以下に例を示す。

一方、引用発明の「明視域の最大幅W」は「関係式（2）： 5≦W≦30（mm）を満たす」ものであるから、引用発明において、相違点3に係る条件（2）の左辺である「WF」（「明視域の最大幅W」に相当する。）は、5以上30以下という範囲内の任意の値を採り得ることになる。

On the other hand, since the "maximum width W of clear vision range" of the cited invention satisfies "relational expression (2): 5 ≦ W ≦ 30 (mm)", according to the cited invention,) "WF" (corresponding to "the maximum width W of the clear vision range") can take any value within the range of 5 to 30.

そして、これら周知のディスプレイ周波数変調ユニット、フレームレート検出手段を引用文献1に記載の発明に適用して請求項1－3に係る発明のように構成することは、当業者が容易に想到しうることであると認められる。

It is easily possible for those skilled in the art to apply these well-known display frequency modulation units and frame rate detection means to the invention described in Japanese Patent Application Laid-Open It is recognized that.
3.2.2 精度向上のための定型文、用語の選定

項番 3.2.1「翻訳精度低下の原因の分析」の結果を踏まえ、精度向上のための定型文、用語の選定を行った。

(1) RBMT②

RBMT②への定型文、用語の選定を行った。選定に際しては、特許庁から貸与を受けたAIPN辞書等との重複の確認、登録による悪影響（副作用）を考慮した。また、登録する訳語については、特許庁から貸与を受けた辞書データ及び対訳コーパスや、本調査で作成した日英対訳コーパス（項番 3.1「日英対訳コーパス作成」参照）にある訳語を参考にしつつ、選定を行った。RBMT②がサポートする3種類の追加辞書用データを登録した。「ユーザ辞書（用語登録）」、「パターン辞書（文の骨格を登録した文パターン登録）」、「メモリ辞書（文例登録）」に登録した件数を下記表に示す。

表 3.2.2-1 RBMT②への追加

<table>
<thead>
<tr>
<th>項目</th>
<th>選定数</th>
</tr>
</thead>
<tbody>
<tr>
<td>ユーザ辞書</td>
<td>123</td>
</tr>
<tr>
<td>パターン辞書</td>
<td>16</td>
</tr>
<tr>
<td>メモリ辞書</td>
<td>6</td>
</tr>
</tbody>
</table>

その他に「請求項※」及び「引用文献※」をユーザ辞書の用語から削除した（項番 3.2.1(2)参照）。

(2) SMT

SMTへの登録する定型文、用語の選定を行った。登録する訳語については、特許庁から貸与を受けた辞書データ及び対訳コーパスや、本調査で作成した対訳コーパス（項番 3.1「日英対訳コーパス作成」参照）にある訳語を参考にしつつ、登録による悪影響（副作用）を考慮の上選定した。また、項番 3.2.2「(1) RBMT②」用の追加辞書用データから取り込み可能な用語を選定した上で登録した。登録はSMTがサポートする3種類（用語、対訳、定型表現）のデータを重複削除した上で作成した。

表 3.2.2-2 SMTへの追加

<table>
<thead>
<tr>
<th>項目</th>
<th>数量</th>
</tr>
</thead>
<tbody>
<tr>
<td>用語（対訳辞書データ）</td>
<td>60件</td>
</tr>
<tr>
<td>対訳（対訳コーパス）</td>
<td>47,625件</td>
</tr>
<tr>
<td>定型表現（パターン）</td>
<td>538件</td>
</tr>
</tbody>
</table>
図3.2.2-1 SMTへの登録可能なデータの種類

(2-1) 用語（対訳辞書データ）への登録について

まず、特許庁から貸与を受けたAIPN辞書の「ユーザ辞書」をSMTの「用語」への登録を検討した。SMTの「用語」はRBMT②のユーザ辞書と違い、品詞情報がないため動詞など、語尾変化に対応できないため、名詞のみを登録候補とした。また、AIPN辞書の「ユーザ辞書」には変数付き辞書（「引用文献」→「(See cited documents <1>, <2>)」など）がある。これらについて、SMTの「定型表現」への登録を検討したが、SMTの「定型表現」は翻訳原文と定型表現で登録した内容が一致した場合のみ登録した訳の採用される仕様であることから、登録候補対象外とした。

また、貸与を受けた辞書はRBMT②への登録を前提とした形式のため、下記の変換を行った。

<table>
<thead>
<tr>
<th>文字コード変換</th>
<th>S-JIS から UTF-8 に変換</th>
</tr>
</thead>
<tbody>
<tr>
<td>『¥』記号の削除</td>
<td>RBMT②では特定の記号をもつ用語を登録する際、記号の前に『¥』を付加する必要がある。SMTへの登録にあたり『¥』を削除した。</td>
</tr>
<tr>
<td>（例）</td>
<td>日本語：（書誌+要約+請求の範囲）</td>
</tr>
<tr>
<td></td>
<td>英語：Bibliographic data + Summary + Claim</td>
</tr>
</tbody>
</table>

39
(2-2) 定型表現への登録について

特許庁から貸与を受けた AIPN 辞書の「パターン辞書」を SMT の「定型表現」への登録を検討した。RBMT②におけるパターン辞書は、下記メンテナンス読本の抜粋のように可変部分は RBMT②の翻訳結果を挿入される。一方、SMT における「定型表現」は下記ヘルプ抜粋にあるように、可変部分には別途登録した辞書データにある用語または数値、記号が挿入される仕様になっている。両者の機能差を踏まえ貸与された「パターン辞書」の内容を確認すると可変部に入れる内容が句や節レベルの内容を想定した内容のものは、SMT へ登録してもパターンが適用されないと考えられるため登録対象外とした。一方、パターンの可変部分に数値が入ることを想定したパターン（例えば、請求項番号）は登録対象とした。

図 3.2.2-2 翻訳パターンについて（RBMT② 辞書メンテナンス読本より抜粋）

図 3.2.2-3 用語集の定型表現（SMT のヘルプより抜粋）

(2-3) 対訳（対訳コーパス）への登録について

特許庁から貸与を受けた対訳コーパス及び本調査で作成した対訳コーパス（項番 3.1「日英対訳コーパスの作成」参照）を SMT の「対訳」への登録候補とした。
41

(2-4) 登録した「用語」、「対訳」を使用したカスタム自動翻訳作成

SMT に登録した「用語」、「対訳」は登録しただけでは機械翻訳の結果に反映されないため、下記に示す「オリジナル自動翻訳」、「結合自動翻訳」、「カスタム自動翻訳」機能により、登録した内容が反映される機械翻訳サービスを作成した。

図 3.2.2-4 カスタム自動翻訳について（SMT）

(2-5) カスタム自動翻訳の有効性確認（予備調査）

これまで検討した「用語」、「対訳」の登録候補で作成したカスタム自動翻訳による翻訳結果の有効性を予備的に確認した。確認は評価対象文から 69 文を使用して、SMT オリジナルの機械翻訳とカスタム自動翻訳との比較を行った。比較対象のカスタム自動翻訳は、「対訳」を追加学習した機械翻訳と、「対訳」と「用語」を追加した機械翻訳の 2 種類を用意し、オリジナルの機械翻訳と比較をした。

表 3.2.2-3 SMT 登録前後の比較結果（文）

<table>
<thead>
<tr>
<th></th>
<th>良い</th>
<th>普通</th>
<th>悪い</th>
</tr>
</thead>
<tbody>
<tr>
<td>オリジナル</td>
<td>10</td>
<td>34</td>
<td>25</td>
</tr>
<tr>
<td>カスタム（対訳）</td>
<td>25</td>
<td>21</td>
<td>23</td>
</tr>
<tr>
<td>カスタム</td>
<td>4</td>
<td>7</td>
<td>58</td>
</tr>
</tbody>
</table>

上記比較の結果、登録した用語が翻訳結果に悪影響を及ぼしていることが分かった。その要因を調査したところ、以下の要因があることが分かった。

41
(ア) 短い用語

用語登録した翻訳結果をみると、以下のような誤訳が多くみられた。これらは登録した辞書に「記」→「note」や「ウ」→「C」といった短い用語が翻訳結果に悪影響を及ぼしていることが分かった。

The invention according to (1) claim 1 4-5, and a field absorption type modulator, optical semiconductor elements note in Cited documents 1 (hereinafter referred to as "different feature 1"). does not include the electro-absorption modulator.

(イ) 登録した用語が翻訳結果に反映されない

辞書登録した用語が翻訳結果に出力されているかを確認したところ、期待した訳語にならない事象が発生した。原因を調査したところ、特許庁から貸与を受けた辞書データに同一の見出し語（日本語）に複数の訳語をもつデータであることが分かった。そして、重複した一方のデータを削除したところ、期待した訳語が翻訳結果に出力された。また、同様に見出し語が重複している用語を調査したところ、449語の見出し語に重複が存在した。SMTにはRBMT②のような複数辞書の優先順位付け機能がない。そのため、これらの用語は訳出したい訳語のデータを1つ選び登録する必要がある。重複用語の例を以下に示す。
また、以下のような和暦に関する辞書が翻訳結果に反映されない事象がみられた。

平成元年	Heisei 1(1989)
平成元年	Heisei 1(1989)
平成1年	Heisei 1(1989)
平成1年	Heisei 1(1989)
平成2年	Heisei 2(1990)

下図は「平成10年」を翻訳した例である。この例を見ると、SMTが独自に和暦を西暦に変換後、翻訳を行っているため、上記辞書登録が適用されなかったと思われる。

(ウ) SMTへ登録する用語の再検討

用語登録の悪影響について、その要因を調査した結果見出し語の短い用語に悪影響のあることが分かった。そこで、SMTへ登録する用語から以下の条件いずれかに該当するものを除外し、その結果を再度確認した。

- 見出し語が1文字の辞書
- 見出し語がひらがなのみ2文字の辞書
- 見出し語がカタカナのみ2文字の辞書

上記条件のいずれかに該当するものは208語存在した。除外した辞書データの例を以下に示す。

ロウ	waxes
ウ	C
エ	D
ヒト	human
つぼ	pressure point
きね	pestle
楓	maple
辺	side
面	surface
短い用語を削除し、翻訳した結果を再度比較した結果を下記表の最下行に示す。比較の結果、「対訳＋用語（短い用語削除）」は「対訳＋用語」に比べ「良い」、「普通」の件数が増加し、「悪い」の件数が少なくなり、改善の効果が確認できた。しかしながら、「対訳」より翻訳精度が低い結果となった。

<table>
<thead>
<tr>
<th></th>
<th>良い</th>
<th>普通</th>
<th>悪い</th>
</tr>
</thead>
<tbody>
<tr>
<td>オリジナル</td>
<td>10</td>
<td>34</td>
<td>25</td>
</tr>
<tr>
<td>対訳</td>
<td>25</td>
<td>21</td>
<td>23</td>
</tr>
<tr>
<td>カスタム（対訳＋用語）</td>
<td>4</td>
<td>7</td>
<td>58</td>
</tr>
<tr>
<td>カスタム（対訳＋用語（短い用語削除）</td>
<td>9</td>
<td>18</td>
<td>42</td>
</tr>
</tbody>
</table>

3.3 文分割の検討

項番3.2.1「翻訳精度低下の原因の分析」では、誤訳以外にも、「RBMT②による原文分割」で示したような適切でない位置の原文分割を原因とする誤訳がみられた。その他にも内容伝達レベルが低い翻訳文には、日本語の係り受けの誤りがみられた。これらは、主に長文や、係り受けの解釈に曖昧性など日本語解析の誤りが要因で、用語や定型文の登録だけでは翻訳精度向上に限界があると考えられる。長文に対する対策として長文分割が考えられるが、「特許明細書の日英機械翻訳における課題」では長文自動分割は対策に試行錯誤が必要で、実現コストが高いものと報告されている。そこで本調査では自動分割に踏み込む人手による文分割を検討した。検討の結果、以下に示す文分割を行い、分割前後の効果を確認した（項番4「精度評価に基づく定型文、用語登録有効性の検証」参照）。

(ア) 文分割1

文分割1は主語である「引用文献1」と述語である「記載されている」との係り受け関係を防ぐ目的で文の分割を行う。

| 前割り | 引用文献1（特に図1, 4, 7とそれらの説明、および、[請求項9, 13-15]) | には、外部装置と中継機器を介して通信する通信装置であって、該中継機器との間で通信を行う通信手段と、第1電力モードから、該第1電力モードより電力消費が少ない第2電力モードに該通信装置を移行させる場合、該通信手段の通信速度を低速にするように制御する制御手段と、該制御手段は、該通信装置の識別情報を該通信手段に送信させる通信装置が記載されている。

| 後割り | 引用文献1（特に図1, 4, 7とそれらの説明、および、[請求項9, 13-15]) | には、以下が記載されている。 | 外部装置と中継機器を介して通信する通信装置であって、該中継機器との間で通信を行う通信手段と、第1電力モードから、該第1電力モードより電力消費が少ない第2電力モードに該通信装置を移行させる場合、該通信手段の通信速度を低速にするように制御する制御手段と、該制御手段は、該通信装置の識別情報を該通信手段に送信させる通信装置。

(イ) 文分割2

文分割2は接続的表現などを手掛かりに文分割を行うものである。

| 前割り | しかしながら、本願明細書等の記載では、引用文献1乃至2に挙げられたP E T繊維、ポリエステル繊維、アラミド繊維ではなく、P B O繊維やポリアリレート繊維を採用することにどのような格別な効果があるのか特定できないことを鑑みれば、抗張力繊維として周知のP B O繊維やポリアリレート繊維を採用するか否かそれ自体は、抗張力性能や価格などのトレードオフを鑑みて決定されるような、当業者が適宜成しうる設計的事項である。

| 後割り | しかしながら、本願明細書等の記載では、引用文献1乃至2に挙げられたP E T繊維、ポリエステル繊維、アラミド繊維ではなく、P B O繊維やポリアリレート繊維を採用することにどのような格別な効果があるのか特定できないで、このことを鑑みれば、抗張力繊維として周知のP B O繊維やポリアリレート繊維を採用するか否かそれ自体は、抗張力性能や価格などのトレードオフを鑑みて決定されるような、当業者が適宜成しうる設計的事項である。
出願人は、引用文献1には松樹皮抽出物、カフェインを配合した発泡性皮膚外用剤に関する具体的な検証はなされておらず、引用文献2～5には、本願の発泡性皮膚外用剤に関する記載はないので、両者を組み合わせることには阻害要因がある。さらに、引用文献1には松樹皮抽出物、カフェインの単独の作用を記載しているに過ぎない旨、また、皮膚外用剤に使用できる植物抽出物は多数あるところ、その中から松樹皮抽出物、カフェインを選定することは困難であり、単独の場合と比較して、皮膚血流量、角質水分量が向上することも引用文献からは到達し得ない旨主張する。

引用文献1や、引用文献2には、平成28年1月29日付け刊行物等提出書に記載されているとおりのAl/Ni比が2～6をとり得る正極活物質の発明が記載されていると認められる。

(ウ) 文分割3（引用箇所分割）

拒絶理由通知書では、引用する公報の記載箇所を段落番号で表現することが多い。文分割3はこの点に着目し、段落番号等の記載箇所を文から分割するものである。この分割により、短文化に加え段落番号部分に起因する日本語解析誤りの低減が期待できる。
（文分割4（カギ括弧の引用記載部分の分割）

拒絶理由通知では、カギ括弧を使いた求項などの記載を引用している部分がある。このような文についてカギ括弧で記載された部分と、それ以外とを分割して短文化することで翻訳精度向上が期待できる。

| 分割前 | そうすると、引用文献1に記載された発明は、請求項1に係る発明の「前記第1電極部を前記反対側の面に投影した際の投影パターンの端部と前記第2の端子部の端部との間の距離が所定の値以上であり、前記第1の端子部を前記反対側の面に投影した際の投影パターンの端部と前記第2電極部の端部との間の距離が所定の値以上であり」に相当する構成を備えると認められる。
| 分割後 | そうすると、引用文献1に記載された発明は、請求項1に係る発明の下記に相当する構成を備えると認められる。

「前記第1電極部を前記反対側の面に投影した際の投影パターンの端部と前記第2の端子部の端部との間の距離が所定の値以上であり、前記第1の端子部を前記反対側の面に投影した際の投影パターンの端部と前記第2電極部の端部との間の距離が所定の値以上であり」
4. 精度評価に基づく定型文、用語登録有効性の検証
4.1 定型文、用語の追加登録後の機械翻訳文の精度評価
4.1.1 評価用日本語原文
(1) 手手評価
項目番号 3.2.2 「精度向上のための定型文、用語の選定」で行った選定結果を踏まえ、定型文、用語の追加登録後の機械翻訳文の精度評価として、下記表の文数を評価対象とした。

表 4.1.1-1 評価対象文数

<table>
<thead>
<tr>
<th>項目</th>
<th>文数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>追加用語、定型文が含まれる文 101 文</td>
</tr>
<tr>
<td>2</td>
<td>文書き換え・文分割した文 10 文 (分割後の文数)</td>
</tr>
</tbody>
</table>

(2) 自動評価
また、登録した定型文、用語の影響を全体的に把握する観点から、項目番号 2.1.1 「日本語原文の選定」で選定した文のうち請求項を除いた 340 文を自動評価の対象とした。

4.1.2 評価対象機械翻訳文
(1) RBMT②
項目番号 3.2.2 「精度向上のための定型文、用語の選定 (1)」で選定した定型文、用語を RBMT ②へ追加登録した機械翻訳を使用した。

(2) SMT
項目番号 3.2.2 「精度向上のための定型文、用語の選定 (2)」で検討した結果を踏まえ、特許庁から貸与を受けた辞書をそのまま適用した場合は翻訳品質に悪影響があるため、貸与を受けた辞書は使用しないこととして、貸与辞書以外のデータを SMT に追加登録した機械翻訳結果を評価対象とした。

4.1.3 手手評価
定型文、用語を追加した前後の内容伝達レベルの評価結果を下記図に示す。グラフは上段より RBMT②（登録前、登録後）、SMT（登録前、登録後）となっている。評価結果の内容伝達レベルの 5 から 3 までの文数を見ると、RBMT②、SMT ともに登録後の文数が増加しており、翻訳精度の向上が確認できた。
文長別に評価結果を見ると、RBMT②、SMT ともに短文、中文、長文全てにおいて翻訳品質改善の傾向がみられた。また、改善した文数は短文が最も多く、中文、長文の順に改善した文数が少なくなる傾向がみられた。
4.1.4 自動評価

定型文、用語追加した前後の自動評価結果を下記図に示す。RBMT②、SMT 共に登録前に比べ、登録後の評価値が向上する傾向がみられた。

図 4.1.4-1 自動評価（BLEU）

図 4.1.4-2 自動評価（NIST）

図 4.1.4-3 自動評価（RIBES）

4.2 定型文、用語追加登録後の精度評価に基づく分析

4.2.1 精度評価に基づく分析及び課題の整理

項目 4.1.3「人手評価」で得られた定型文、用語追加登録前後の内容伝達レベルの評価値を比較し、改善、同等、改悪に分類した。その結果をもとに機械翻訳サービスごとの分析を行った。
表 4.2.1-1 定型文、用語登録前後の一対比較結果

<table>
<thead>
<tr>
<th></th>
<th>RBMT②</th>
<th>SMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>改善</td>
<td>73 文</td>
<td>53 文</td>
</tr>
<tr>
<td>同等</td>
<td>24 文</td>
<td>36 文</td>
</tr>
<tr>
<td>改悪</td>
<td>4 文</td>
<td>12 文</td>
</tr>
</tbody>
</table>

(1) RBMT②

RBMT②は、評価対象101文中、73文で改善がみられ、4文が改悪となった。改善した文の内訳は、メモリ辞書（文例登録）による改善が6文、パターン辞書（文の骨格を登録した文パターン登録）による改善が15文、その他はユーザ辞書（用語辞書）であった。このことから改善要因は各種辞書の追加登録によるものであり、追加登録内容は、ほぼ改善に作用していることが確認できた。内容伝達レベルの観点からは文例登録や文パターン登録による、内容伝達レベルの向上が顕著にみられた一方、辞書登録は、文全体の一部の品質向上の寄与にとどまるケースが多かった。

(1-1) 用語辞書登録による用語の改善

下記は、用語辞書登録により、適切な用語になった改善例である。

<table>
<thead>
<tr>
<th>内容伝達レベル</th>
<th>登録前: 2.5</th>
<th>登録後: 3.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>登録前</td>
<td>すなわち、同号証第2頁左上欄第6行〜第9行には、『一般的にはボルト等へ耐蝕めっきを施す場合には、ボルトの脚部へねじ山を切削、転造等により形成し、このボルトを溶融亜鉛浴の中へ浸漬して亜鉛めっきを行っている。』と記載され、…</td>
<td></td>
</tr>
<tr>
<td></td>
<td>namely, aforementioned proof 6th line on the upper left-hand section in page 2 - to the 9th line, "in giving 耐蝕めっき-proof to a bolt etc. generally, A screw thread is formed in the leg of a bolt by cutting, form rolling, etc., this bolt is immersed into a molten zinc bath, and galvanization is performed. It describes …</td>
<td></td>
</tr>
<tr>
<td>登録後</td>
<td>すなわち、同号証第2頁左上欄第6行〜第9行には、『一般的にはボルト等へ耐蝕めっきを施す場合には、ボルトの脚部へねじ山を切削、転造等により形成し、このボルトを溶融亜鉛浴の中へ浸漬して亜鉛めっきを行っている。』と記載され、…</td>
<td></td>
</tr>
<tr>
<td></td>
<td>namely, aforementioned proof 6th line on the upper left-hand section in page 2 - to the 9th line, "in giving anticorrosive plating to a bolt etc. generally, A screw thread is formed in the leg of a bolt by cutting, form rolling, etc., this bolt is immersed into a molten zinc bath, and the galvanize is performed. It describes …</td>
<td></td>
</tr>
<tr>
<td>改善の要因となった用語</td>
<td>耐蝕めっき</td>
<td></td>
</tr>
<tr>
<td>登録用語</td>
<td>anticorrosive plating</td>
<td></td>
</tr>
</tbody>
</table>
(1-2) 用語辞書登録による構文解釈や係り受けの改善

追加用語登録により、正しく構文解釈や係り受けを捉えることができたケースが登録後の翻訳文でみられた。

下記は、用語登録前の翻訳文では「本願請求項 1-2、7に係る発明の発明特定事項」が「claims 1-2 in this application, the matters specifying the invention of the invention concerning 7」と、「本願請求項 1-2」と「7に係る発明の発明特定事項」が別々に解釈されていたが、登録後の翻訳文では、「the matter specifying the invention concerning claims 1-2, 7 in this application」と、正しく係り受けを捉えることが出来た改善例である。

<table>
<thead>
<tr>
<th>内容伝達レベル</th>
<th>登録前: 1.5</th>
<th>登録後: 4.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>登録前</td>
<td>してみれば、本願請求項 1-2、7に係る発明の発明特定事項と、引用文献 1 に記載された発明の発明特定事項との間に差異はない。</td>
<td></td>
</tr>
<tr>
<td>Then, it is same between claims 1-2 in this application, the matters specifying the invention of the invention concerning 7, and the matters specifying the invention of the invention described in cited document 1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>登録後</td>
<td>してみれば、本願請求項 1-2、7に係る発明の発明特定事項と、引用文献 1 に記載された発明の発明特定事項との間に差異はない。</td>
<td></td>
</tr>
<tr>
<td>Then, it is same between the matter specifying the invention concerning claims 1-2, 7 in this application, and the matters specifying the Invention of an invention described in the Cited document 1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>改善の要因となった</td>
<td>本願請求項※-※、※</td>
<td></td>
</tr>
<tr>
<td>登録用語</td>
<td>claims <1><2>, <3> in this application</td>
<td></td>
</tr>
</tbody>
</table>
下記は、用語登録前の翻訳文では「初めに、」がその後に続く「相違点1」と並列として解釈され、正しく構文解釈ができていなかったが、登録後の翻訳文では、「初めに、」が副詞として文頭で正しく訳出できたことにより、正しい構文解釈となった改善例である。

<table>
<thead>
<tr>
<th>内容伝達レベル</th>
<th>登録前: 1.5</th>
<th>登録後: 4.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>登録前</td>
<td>初めに、相違点1に係る訂正特許発明1の特定事項に関し、その技術的意義について検討する。</td>
<td>The technical meaning is considered about matter to define the invention of correction patented invention 1 concerning introduction and different feature 1.</td>
</tr>
<tr>
<td>登録後</td>
<td>First of all, the technical meaning is considered about matter to define the invention of amended patent invention 1 concerning different feature 1.</td>
<td></td>
</tr>
</tbody>
</table>

改善の要因となった
登録用語
初めに（副詞） / 訂正特許發明

下記は、用語登録前の翻訳文では「直接対応します」が「direct correspondence（直接対応）」と「carry out（する）」が分割されて解釈され、また、その主語である「イベント」の係り受けに誤りがあるが、登録後の翻訳文では、正しい構文解釈及び用語となった改善例である。

<table>
<thead>
<tr>
<th>内容伝達レベル</th>
<th>登録前: 3.0</th>
<th>登録後: 4.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>登録前</td>
<td>これに対して、本願請求項1に係る発明によると、イベントは、映像ファイルのビデオフレームではなく、オーディオファイル内のサウンドトラックデータに直接対応します。</td>
<td>On the other hand, according to the invention concerning claim 1 in this application, direct correspondence of the event is carried out to the sound track data in an audio file instead of the video frame of an image file.</td>
</tr>
<tr>
<td>登録後</td>
<td>On the other hand, according to the invention concerning claim 1 in this application, an event directly corresponds the sound track data in an audio file instead of the video frame of an image file.</td>
<td></td>
</tr>
</tbody>
</table>

改善の要因となった
登録用語
直接対応する

directly correspond
(1-3) 文例登録及び文パターン登録による改善

文例登録や文パターン登録により、文例に登録された文や文パターンが適用されるケースとなるが、文登録は登録文がそのまま適用される性質のものであるため、例示は省略する。下記の日本語は、日付以外は固定的に使用される汎用性がある文と判断し、文パターン登録を行った例である。登録前の翻訳文では、「したもの」が「what was carried out」とたらたいどっしい訳出であったが、登録後の翻訳文では、文パターン登録が適用され、改善した。

<table>
<thead>
<tr>
<th>内容伝達レベル</th>
<th>登録前：3.5</th>
<th>登録後：4.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>登録前</td>
<td>この出願は、以下の理由により出願日の遡及が認められないから、平成28年12月6日にしたものとみなされる。</td>
<td>Since retroactive effects in respect of the filing date are not accepted for the following Reasons, it is considered that this application is what was carried out on Heisei 28(2016) December 6.</td>
</tr>
<tr>
<td>登録後</td>
<td>この出願は、以下の理由により出願日の遡及が認められないから、平成28年12月6日にしたものとみなされる。</td>
<td>This application is deemed to have been applied on Heisei 28(2016) December 6, on the grounds that the application date shall not be retroactive for the following reasons.</td>
</tr>
<tr>
<td>改善の要因となった文パターン登録</td>
<td>この出願は、以下の理由により出願日の遡及が認められないから、<1>にしたものとみなされる。</td>
<td>This application is deemed to have been applied on <1>, on the grounds that the application date shall not be retroactive for the following reasons.</td>
</tr>
</tbody>
</table>

(1-4) 用語辞書登録による構文解釈や係り受けの悪化

追加用語登録により、これまで正しく捉えられていた係り受けが崩れてしまうケースが登録後の翻訳文でみられた。

下記は、用語登録前の翻訳文では「請求項1－5に係る発明と引用文献1に記載された発明」が「the invention concerning Claims 1-5 and the invention described to cited document 1」と、「請求項1－5に係る発明」と「引用文献1に記載された発明」が適切に並列として解釈出来ていたが、登録後の翻訳文では、「the invention and invention described in the Cited document 1 concerning Claims 1-5」となり、「請求項1－5に係る発明」と「請求項1－5に係る引用文献1に記載された発明」という並列関係になってしまった例である。追加後の並列の解釈は文法上こそ解釈可能であるが、意味的に誤りである。
<table>
<thead>
<tr>
<th>内容伝達レベル</th>
<th>登録前：4.5</th>
<th>登録後：3.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>登録前</td>
<td>請求項1-5に係る発明と引用文献1に記載された発明を対比すると，両者は発明を特定するための事項に差異がない。</td>
<td>When the invention concerning Claims 1-5 and the invention described to cited document 1 are contrasted, both do not have a difference in a matter to define the invention.</td>
</tr>
<tr>
<td>登録後</td>
<td>請求項1-5に係る発明と引用文献1に記載された発明を対比すると，両者は発明を特定するための事項に差異がない。</td>
<td>When the invention and invention described in the Cited document 1 concerning Claims 1-5 are contrasted, both do not have a difference in a matter specifying the invention.</td>
</tr>
<tr>
<td>悪化の原因となった登録用語</td>
<td>引用文献に記載された発明</td>
<td>invention described in the Cited document <1></td>
</tr>
</tbody>
</table>
(1-5) 文パターン登録による構文解釈や係り受けの悪化

下記は、用語登録前の翻訳文では冒頭の「以上の点を総合して」が翻訳結果も同様に冒頭で「The above point is synthesized」と、翻訳内容は良くないながらも文構造はきちんと捉えていたが、登録後の翻訳文では、冒頭の「以上の点を総合して」の訳が文中に移動し、さらに係り受けが大幅に悪化した例である。

なお、参考として、この日本語の後半部分を抽出した日本語「本願の請求項1-5に係る発明の発明特定事項と、引用文献1記載の発明の発明特定事項との間に、差異は認められない。」に絞って翻訳すると、以下に示すように文意をほぼ正確に反映した訳文となる。

<table>
<thead>
<tr>
<th>内容伝達レベル</th>
<th>登録前：2.5</th>
<th>登録後：2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>登録前</td>
<td>以上の点を総合して、本願の請求項1-5に係る発明と、引用文献1記載の発明とを対比しても、本願の請求項1-5に係る発明の発明特定事項と、引用文献1記載の発明の発明特定事項との間に、差異は認められない。</td>
<td>The above point is synthesized, and even if it contrasts the invention concerning the Claims 1-5 of this application, and the invention in the cited document 1, a difference is not accepted between the matters specifying the invention of the invention concerning the Claims 1-5 of this application, and the matters specifying the invention of the invention in the cited document 1.</td>
</tr>
<tr>
<td>登録後</td>
<td>以上の点を総合して、本願の請求項1-5に係る発明と、引用文献1記載の発明とを対比しても、本願の請求項1-5に係る発明の発明特定事項と、引用文献1記載の発明の発明特定事項との間に、差異は認められない。</td>
<td>No difference can be recognized between the invention which synthesizes the above point and relates to the Claims 1-5 of this application and the matter specifying the invention which starts the Claims 1-5 of this application even if it contrasts the invention in the cited document 1, and the matters specifying the Invention of the invention in the cited document 1.</td>
</tr>
<tr>
<td>悪化の原因となった文パターン登録</td>
<td><1>と<2>との間に差異は認められない</td>
<td></td>
</tr>
<tr>
<td>登録後（参考）</td>
<td>本願の請求項1-5に係る発明の発明特定事項と、引用文献1記載の発明の発明特定事項との間に、差異は認められない。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No difference can be recognized between the matters specifying the Invention of the invention concerning the Claims 1-5 of this application and the matters specifying the Invention of the invention in the cited document 1.</td>
<td></td>
</tr>
</tbody>
</table>
(2) SMT

SMT は定型文、用語登録前後の比較の結果、53 文が改善し、12 文が悪化した。改善した文のうち、登録した対訳文と原文が一致したことによる改善が 9 文存在した。改善した文、改悪となった文についてその要因を分析した。

(2-1) SMT システムの改善（請求項番号などの数字、記号の扱いの改善）

本調査は、定型文、用語登録前の翻訳結果を評価した後に登録する定型文、用語を登録した機械翻訳結果を再度評価した。登録前の機械翻訳文を 2016 年 12 月、登録後の機械翻訳文は 2017 年 2 月に取得した。登録したことにより SMT システムが変更され、機械翻訳結果にも改善がみられた。具体的には、下記に示すように請求項番号で使用される記号が適切に訳出されるようになった。

<table>
<thead>
<tr>
<th>内容伝達レベル</th>
<th>登録前: 2.5</th>
<th>登録後: 3.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>原文</td>
<td>（1）請求項 1-3、5-6 に係る発明は、・・・</td>
<td></td>
</tr>
<tr>
<td>登録前</td>
<td>The (1) wherein 1-3.5.6 is provided with a …</td>
<td></td>
</tr>
<tr>
<td>登録後</td>
<td>The invention according to (1) claims 1-3.5.6 is …</td>
<td></td>
</tr>
</tbody>
</table>

(2-2) コーパス登録、用語辞書登録による用語の改善

コーパス登録、用語辞書登録により、より適切な用語となり、不要な用語が無くなった改善例である。

<table>
<thead>
<tr>
<th>内容伝達レベル</th>
<th>登録前: 3.5</th>
<th>登録後: 4.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>原文</td>
<td>そして、これらの引用文献 5、8 に記載された発明は当業者における周知技術であり、引用文献 1 の発明に適用できるものである。</td>
<td></td>
</tr>
<tr>
<td>登録前</td>
<td>Then, each of the inventions described in these Patent Document 5,8 discloses the technique that is well known in those skilled in the art and can be applied to the invention of Patent document 1.</td>
<td></td>
</tr>
<tr>
<td>登録後</td>
<td>Then, the invention described in the Cited Document 5,8 is a well known art in those skilled in the art and can be applied to the invention of Patent document 1.</td>
<td></td>
</tr>
</tbody>
</table>

(2-3) コーパス登録、用語辞書登録による構文解釈の改善

コーパス登録、用語辞書登録により用語の改善に加え、構文解釈の改善が認められた例である。

下記は、条文の訳訳の改善に加え、「特許法第 39 条第 1 項の規定に基づいて拒絶理由を通知する」の訳出に対し、用語登録前は「the reason for rejection in accordance with the provisions of the Patent Law 35 USC 39」と、動詞である「通知する」の意が抜けたことで、意味を捉えることが全体的に難しくなっているが、用語登録後は、「to notify reasons for refusal based on
the provisions of Article 39 (1) of the Patent Act」と問題なく訳出され、全体的な構文解釈にも改善がみられた例である。

<table>
<thead>
<tr>
<th>内容伝達レベル</th>
<th>登録前: 1.0</th>
<th>登録後: 3.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>原文</td>
<td>此この拒絶理由通知は、本願と出願人が同一である未確定の先願（出願審査未請求のものも含む）に基づき特許法第39条第1項の規定に基づいて拒絶理由を通知するものである。</td>
<td></td>
</tr>
<tr>
<td>登録前</td>
<td>This notification of reasons for refusal, the reason for rejection in accordance with the provisions of the Patent Law 35 USC 39, 1 paragraph based on the destination of the undetermined application of the same applicant as the present application (but also for an application examination unclaimed).</td>
<td></td>
</tr>
<tr>
<td>登録後</td>
<td>This notification of reasons for refusal is to notify reasons for refusal based on the provisions of Article 39 (1) of the Patent Act based on the destination undecided Application of the same applicant as the present application (also includes application for which request for substantive examination has not been made).</td>
<td></td>
</tr>
</tbody>
</table>

(2-4) 湧き出し、訳抜け

定型文、用語前の翻訳文では存在しなかった訳抜け、湧き出しが登録後の翻訳文でみられた。

<table>
<thead>
<tr>
<th>内容伝達レベル</th>
<th>登録前: 2.5</th>
<th>登録後: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>登録前</td>
<td>In comparison with the invention described in Patent Literature 2, the invention according to claim 1 (differences) whereas "mixture" is, as described in the cited reference 2, points "solidified" is apparently different.</td>
<td></td>
</tr>
</tbody>
</table>
翻訳過程を調査すると、定型文、用語追加登録前後で翻訳されるフレーズの区切りが変化したことにより、訳語の湧き出し「is」と、原文の「と」に対する訳抜けが同一箇所で発生した結果、翻訳精度が悪化した。

(2-5) 釈語の改悪
下記は定型文、用語追加前の翻訳文では用語「SiC ベース基板」が「SiC base substrate」と適切に翻訳されていたが、追加後の翻訳文では「based on SiC substrate」と翻訳された悪化した例である。

<table>
<thead>
<tr>
<th>内容伝達レベル</th>
<th>登録前：2.5</th>
<th>登録後：2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>登録前</td>
<td></td>
<td></td>
</tr>
<tr>
<td>話順変換 + 翻訳</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In the notification of reasons for refusal, the disclosure of Document 1, identified as <code>SiC base substrate</code>, a SiC single crystal is present on the outermost surface layer" is a matter of design choice.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
翻訳過程を調査すると、定型文、用語追加前ではフレーズ「SiC」と「ベース基板」の訳語が使用されていたが、追加後は翻訳されるフレーズの区切りが変化し、「SiCベース」、「基板」の訳語が使用されたため、適切な翻訳結果とならなかった。

(3) 文分割
原文の文分割が翻訳精度に寄与するかを評価した結果、RBMT②、SMTともに分割した文の全てにおいて、分割前とほぼ同等の内容伝達レベルの評価となった。評価結果を見ると文分割が機械翻訳の構文解析の改善に結びつかず結果として同評価結果となった。さらに詳細に文分割前後の訳文を比較すると、SMTで文分割後に訳抜け、引用番号が記載不備（「2009 259798」→「259798 2009」）といった細かな改悪がみられた。

4.2.2 定型文、用語等の対訳リスト作成
項目4.2.1「精度評価結果に基づく分析及び課題の整理」の結果を踏まえ、定型文、用語等の対訳リストを作成した（項目6.4「定型文、用語等の対訳リスト」参照）。
対訳リスト作成に際し、定型文、用語追加登録後の精度評価結果から、改善がみられなかった事例を中心に機械翻訳サービスごとに分析を行い、定型文、用語追加登録内容を見直した。

(1) RBMT②
項目4.2.1「精度評価結果に基づく分析及び課題の整理」の結果を踏まえ、改善がみられなかった事例から、追加登録内容の見直しを実施した。

登録した文パターン「<1>と<2>との間に差異は認められない：no difference can be recognized between <1> and <2>」は文構造が複雑な文であると、文パターンを適用することにより係り受けが悪化し、その結果として、文パターン適用前よりも文全体の翻訳精度が悪化するケースがあることが判明した。
このため、この文パターンの適否を判定するため、貸与データから「との間に差異は認められない」が含まれる文を抽出し、抽出できた5文に対し当該パターンの適用前後の比較を行った。

比較の結果、5文中3文が改善、1文が悪化、1文が同等であった。改善した3文はいずれも文構造がシンプルであり、パターン適用前の訳文もそれなりの精度であったことに対し、悪化した1文は、項番4.2.1「精度評価結果に基づく分析及び課題の整理」の「文パターン登録による構文解釈や係り受けの悪化」の事例と同様に、係り受けが大幅に悪化した。

このことから、数としては改善が上回ったが、悪化の度合いを考慮し、当該パターン及びこの類似パターン（読点を含むパターン）の計2例についての適用は見合わせることとした。

改善した例（他2文）

<table>
<thead>
<tr>
<th>原文</th>
<th>登録前</th>
<th>登録後</th>
</tr>
</thead>
<tbody>
<tr>
<td>よって、本願請求項1に係る発明と引用例1に記載された発明との間に差異は認められない。</td>
<td>Therefore, a difference is not accepted between the invention concerning claim 1 in this application, and the invention described in Cited document 1.</td>
<td>Therefore, no difference can be recognized between the invention concerning claim 1 in this application and the invention described in Cited document 1.</td>
</tr>
</tbody>
</table>

備考

登録により、より適切な表現となったが、登録前でも文意は十分に通じる。

悪化した例

<table>
<thead>
<tr>
<th>原文</th>
<th>登録前</th>
<th>登録後</th>
</tr>
</thead>
<tbody>
<tr>
<td>そうすると、前述したように、表面被覆層付き銅合金が有するCu-Sn合金相中に、ごくわずかであってもε相が形成されるであろうことも考慮すると、請求項1、3-5に係る発明と引用文献3に記載された発明との間に差異は認められない。</td>
<td>If the fact that probably epsilon phase will be formed into the Cu-Sn alloy phase which a copper alloy with a surface coat layer has even if very small is also then taken into consideration as mentioned above, a difference will not be accepted between the invention and invention described in the Cited document 3 concerning claims 1, 3-5.</td>
<td>No difference can be recognized between the invention which will relate to claims 1, 3-5 if the fact that probably epsilon phase will be formed into the Cu-Sn alloy phase which a copper alloy with a surface coat layer has even if very small is also then taken into consideration as mentioned above and an invention described in the Cited document 3.</td>
</tr>
</tbody>
</table>

備考

登録により、部分的に改善した箇所はあるものの、全体的な文構造の解釈が悪化した。
(2) SMT

定型文、用語の登録が悪化したものを中心に登録内容の見直しを検討したが、悪化の原因となる文の特定ができないかった。しかししながら、自動評価の結果や、登録前後の比較から全体的には改善傾向が確認できた。
5. 課題

本調査を通じて判明した課題を下記表に示す。

表 5-1 課題一覧

<table>
<thead>
<tr>
<th>カテゴリ</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 RBMT①</td>
<td>RBMT①で意図した訳出とならないケース</td>
</tr>
<tr>
<td>5.2 RBMT①</td>
<td>文中の見出し表現</td>
</tr>
<tr>
<td>5.3 自動評価 (BLEU)</td>
<td>人手評価と自動評価との相違</td>
</tr>
<tr>
<td>5.4 辞書</td>
<td>特許庁貸与辞書について</td>
</tr>
<tr>
<td>5.5 統計的機械翻訳</td>
<td>統計的機械翻訳の課題</td>
</tr>
</tbody>
</table>

5.1 RBMT①で意図した訳出とならないケース

翻訳対象となる日本語原文の形式は規定文字数で強制的に改行が入る形式（例 1）となっているおり、このまま改行の単位で翻訳すると意図したものと違う形で翻訳されてしまう。このため、この改行で別れた文をつなげるために、翻訳前に改行処理が行われている。

ただし、原文中の改行が 2 つ連続した場合には、文章を区切るよう整形処理が行われている。この翻訳前の整形処理により、以下の「意図した機械翻訳とならないケース」のように、見出しに「最後の拒絶理由通知とする理由」があり改行の後に文章が続くケースは、翻訳前の改行処理により、見出しとその後の文が一続きの一文扱いとなってしまい、意図した機械翻訳とならないケースがある。

例 1. 日本語原文

```
この出願は、次の理由によって拒絶をすべきものです。これについて意見がありましたら、この通知書の発送の日から 60 日以内に意見書を提出してください。

理由

最後の拒絶理由通知とする理由
この拒絶理由通知は、最初の拒絶理由通知に対する応答時の補正によって通知することが必要になった拒絶理由のみを通知するものである。
```

問題なく機械翻訳できるケース

```
<<<< 最 後 >>>>
```

この出願は、次の理由によって拒絶をすべきものです。これについて意見がありましたら、この通知書の発送の日から 60 日以内に意見書を提出してください。

理 由

意図した機械翻訳とならないケース

最後の拒絶理由通知とする理由
この拒絶理由通知は、最初の拒絶理由通知に対する応答時の補正によって通知することが必要になった拒絶理由のみを通知するものである。
例 2. 対応機械翻訳文

<<< Final Notification of Reason(s) for Refusal >>>>
This application should be refused for the reason that the following Reason. If the applicant has any argument against the reason, such argument should be submitted within 60 days from the dispatch date of this notification.

Reason
The Notification of Reasons for Refusal of ****** made into the final Notification of Reasons for Refusal notifies only the reason for refusal for which it is necessary to notify by correction at the time of the response to a first Notification of Reasons for Refusal.

5.2 文中の見出し表現
調査対象の日本語原文のうち、以下に示すような読みやすさを重視した表現がみられた。

このような文は機械翻訳では「請求項1・・・(相違点)請求項1に係る・・・相違する。」のように、見出し「(相違点)」が文の一部として扱われるため、機械翻訳にとって難しい表現となる。

5.3 人手評価と自動評価との相違
本調査では、人手評価と自動評価によって機械翻訳の翻訳品質の評価を行った。この両者の評価結果を比べると、人手評価と自動評価との間に相違がみられた。下記例に示す機械翻訳文1と機械翻訳文2は人手評価をするときほど差がないような文だが、自動評価の結果は大きな差が生じた。

基準翻訳文	a conventional method to improve coercive force of a magnet is to include input of a pure metal or alloy of the rare earth raw materials tb and dy in the process of melting.
機械翻訳文1 (BLEU:0.45)	conventionally, a method of improving the coercive force of the magnet is to put the pure metal or alloy of rare earth raw materials tb or dy in the process of melting.
機械翻訳文2 (BLEU:0.29)	conventionally, a method of improving the coercive force of the magnet is to place the pure metals or alloys of rare earth raw material tb or dy in the process of melting.

上記例で機械翻訳文1、機械翻訳文2の赤字部分は基準翻訳文との相違部分、青文字部
分は機械翻訳文2においてのみ基準翻訳文と相違する部分を示している。機械翻訳文1と機械翻訳文2との差は、青地部分の単語かつ基準翻訳文との相違内容は単数形、複数形の違いであるため、人による評価の差はさほど大きくはならない。

一方、自動評価BLEUは0.45、0.29となり人による評価に比べ大きな差となった。これは自動評価手法が文字列の一致に基づいているため、まったく異なる単語の違いも、単数形、複数形の違いも同様に異なりとして扱う点、また、BLEUは通常、1単語から4単語列までの範囲の部分文字列で基準翻訳文の一致数を計算する仕組みであるため、青文字のような飛び飛びの単語の相違がn単語の部分文字列での一致数に大きな影響を与えるため、自動評価値に比較的大きな差が生じたと考えられる。

5.4 特許庁貸与辞書について

本調査で使用した辞書の「審決日英機械翻訳用辞書」について、下記のような内容がみられた。特許庁が保有する他の辞書と併せて使用する際には注意が必要である。

<table>
<thead>
<tr>
<th>一文字の語の辞書登録は適用範囲が広大であり、思わぬ副作用の懸念があるため、登録を避けたパターン</th>
</tr>
</thead>
<tbody>
<tr>
<td>ウ</td>
</tr>
<tr>
<td>エ</td>
</tr>
<tr>
<td>(オ)</td>
</tr>
</tbody>
</table>

■一般的な語であるため、一語に決めつけるよりも、エンジンの訳し分け設定に委ねたほうが良いと判断し、登録を避けたパターン。前提としては、特許審査関係書類の他に特許文書においても同じ辞書で行うと仮定している。

対比 Comparison →他に contrast, set など

ロウ waxes →low (ハイアンドロー、ギアのロー (ロウ)), lowness

発表 publication →announcement, disclosure, release など

工程 step →process, operation など

解消する overcome →eliminates, resolve など ※重要用語の選定から

着用させた is put on →wear など

5.5 統計的機械翻訳の課題

本調査では統計的機械翻訳として、SMTの評価・分析を行った。分析においていくつかの課題が存在した。同様の課題が「英日・中日特許SMTシステムの実用化と課題」で指摘されているので以下概要を紹介する。

(1) 語順変換

英日機械翻訳における英語の語順変換（英語を日本語の語順に変換）に比べ日英機械翻訳における日本語の語順変換（日本語を英語の語順に変換）に課題がある。

(2) 訳抜け

(3) 否定・肯定のモダリティを正しく訳す。

(4) 訳語の統一

また、特許特有の課題として、請求項などの超長文に対して分割翻訳が有効である点の指摘があった。本調査の調査対象である審査関連情報の文章も、超長文である点で共通しており、請求項とともに改善が期待される。

その他、対訳コーパスに関連する課題への対処法として「機械翻訳のドメイン適応とカスタマイズの事例14」では以下の内容が報告されていた。

(5) 対訳コーパスに起因する誤り等への対処法

(6) 対訳文が非常に少ない場合のドメイン適応

特に、(6)については本調査の調査対象である審査関連書類のような対訳コーパスの量が少ない文書に対する対処法と考えられる。

6. 付録

6.1 自動評価手法の概要

自動評価手法の概要は「平成27年度 特許審査関連情報の日英機械翻訳文の品質評価に関する調査報告書15」からの引用となる。

機械翻訳の評価手法として古くから人手による評価が行われ、現在も行われている。しかし、人手による評価はコストがかかるため、コンピュータを用いた自動評価ができれば望ましい。このような動機から自動評価が考えられ、これまでに多くの自動評価基準が提案されている。自動評価では、まず試験文(原文)に対して基準翻訳文と呼ばれる、いわば合理的な訳文を用意しておく。その後、原文を機械翻訳し、機械翻訳文と基準翻訳文がどれほど近いかで翻訳精度を評価するものである。基準翻訳文に近い機械翻訳文ほど翻訳精度が高いと判断する。このときの「近さ」をどのようにして測るかで様々な自動評価基準が考えられる16。ここでは、今回使用した3種類の自動評価基準であるBLEU、NIST、RIBESについて、具体例を交えて説明する。

6.1.1 BLEU

BLEU(Bilingual Evaluation Understudy)は機械翻訳の自動評価基準として最初に提案された基準であり[2]、現在でも多く使われている。BLEUは以下のようにして求められる。基準翻訳文と機械翻訳文の双方を単語分割し17、得られる単語nグラム(連続するn個の単語)\(w_1,w_2,\ldots,w_n\)に対して、基準翻訳文と機械翻訳文中の頻度を求めめる。

\[
C_{\text{test}}(w_1,w_2,\ldots,w_n) = \text{機械翻訳文中の} w_1,w_2,\ldots,w_n \text{の頻度}
\]

\[
C_{\text{ref}}(w_1,w_2,\ldots,w_n) = \text{基準翻訳文中の} w_1,w_2,\ldots,w_n \text{の頻度}
\]

そして、\(C_{\text{clip}}(w_1,w_2,\ldots,w_n)\)を次のようにして求める。

\[
C_{\text{clip}}(w_1,w_2,\ldots,w_n) = \min(C_{\text{test}}(w_1,w_2,\ldots,w_n),C_{\text{ref}}(w_1,w_2,\ldots,w_n))
\]

つまり、機械翻訳文中の頻度と基準翻訳文中の頻度のうちの小さい方の値である。具体例で説明する。

[例文 1]

原文 コネクタ本体14が基板12上に実装される

基準翻訳文 The connector main body 14 is mounted on the substrate 12

16 原文を翻訳する場合、合理的な訳文は一つとは限らない。そこで、基準翻訳文を複数用意して近さを測る方法もあるが、特許翻訳の場合、単一の基準翻訳文を用いることが多い。今回の場合でもそのようにしている。そこで、本文では単一の基準翻訳文の場合についてのみ説明する。また、1文単位で評価するのではなく複数の文からなるドキュメント単位で評価する場合があるが、ここでは文単位の評価について考える。
17 大文字と小文字を区別せず、"The"と"the"は同一の単語とみなす。また、ピリオドやコンマなどはその前の単語と分離して単独の単語として扱う。
機械翻訳文 The connector body 14 is mounted on the substrate body 12
とするとき、n=1 として w_1 = "body" の場合を考える。このとき、機械翻訳文中の "body" の
頻度は 2 であり、基準翻訳文中の "body" の頻度は 1 である。そこで、 C_{est}(body) = 2、
C_{ref}(body) = 1、C_{clip}(body) = 1 となる。

次に、機械翻訳文に含まれるすべての n グラム G_n を用いて n グラムの適合率 p_n を以下の式
で求める。

\[p_n = \frac{\sum_{w_1,w_2,...,w_n \in G_n} C_{clip}(w_1,w_2,...,w_n)}{\sum_{w_1,w_2,...,w_n \in G_n} C_{est}(w_1,w_2,...,w_n)} \]

例文 1 の場合、G_1 = { the, connector, body, 14, is, mounted, on, substrate, 12 } であり、

\[p_1 = \frac{2 + 1 + 1 + 1 + 1 + 1 + 1}{2 + 1 + 2 + 1 + 1 + 1 + 1 + 1} = \frac{10}{11} = 0.909 \]

となる。p_n の相乗平均をもとに BLEU は以下のように計算される。

\[BLEU = BP \cdot \sqrt[p_1]{p_2 \cdots p_N} \]

ここで、N は考慮する最大のグラム数であり、通常は 4 が用いられる。また、BP は brevity
penalty と呼ばれる補正項であり、機械翻訳文が短い場合に BLEU の値が大きくなってしまう不
具合を修正するもので

\[BP = \begin{cases} 1, & c > r \\ \frac{1}{c(1-r/c)}, & c \leq r \end{cases} \]

で定義される。ここで c は機械翻訳文の単語数であり、r は基数翻訳文の単語数である。
つまり、c が r より少ないときにペナルティを課す項である。たとえば、例文 1 の場合、機
械翻訳文が "body 14 is mounted" という断片的な訳文でも N=4 としたときには p_1 = p_2 = p_3 =
p_4 = 1 となり \sqrt[p_1]{p_2 \cdots p_N} = 1 となってしまうが、r/c = 11/4 = 2.75 となり、BP = 0.174 であ
るから BLEU = 0.174 と小さな値となる。

0 ≤ p_n ≤ 1 が成り立ち、0 < BP ≤ 1 であるから、BLEU は 0 と 1 の間の数値をとり、大きい
ほど機械翻訳文が基準翻訳文に近いことになる。

例文 1 の場合、p_1 = 0.9091, p_2 = 0.7, p_3 = 0.5556, p_4 = 0.5 となり、\sqrt[p_1]{p_2 p_3 p_4} = 0.6484 で
ある。さらに BP = 1 であるため BLEU=0.6484 となる。

6.1.2 Smoothed BLEU

BLEU の問題点のうちの一つは、p_n の相乗平均を用いているため、p_n = 0 となる n が一
つでもあると BLEU=0 となってしまうことである。このため、オリジナルの BLEU では文
単位の評価に用いるのではなく、ドキュメント単位の評価に用いるべきものとしている。ド
キュメントにおいては 4 グラムのような比較的大きさな n に対しても p_n = 0 となることは考
えにくい、その場合 BLEU=0 となることもないからである。しかし、BLEU を文単位の評価
に用いたいという要望は多く、上記の問題に対処する方法がいくつか提案されている[3]。

18 c/r に対する BP の値は後述する図 6.1.3-1 に示されている。
ここでは NIST からフリーの評価ツール mteval-v13a.pl として提供されている方法について説明する。n プラックの適合率を以下のよう修正する。

\[
p_n = f(x) = \begin{cases}
\frac{\sum_{w_1, w_2, \ldots, w_n \in G_n} C_{\text{clip}}^{\text{test}}(w_1, w_2, \ldots, w_n)}{\sum_{w_1, w_2, \ldots, w_n \in G_n} C_{\text{test}}^{\text{test}}(w_1, w_2, \ldots, w_n)}, & p_n \neq 0 \\
1/2^{(n-k+1)}, & n \geq k \text{ where } p_{k-1} \neq 0 \text{ and } p_k = 0
\end{cases}
\]

例えば、\(p_4 = 0 \) で \(p_3 \neq 0 \) の場合、\(\tilde{p}_4 \) の分子は、\(1/2^4 = 1/2 \) となる。\(\tilde{p}_4 \) を用いて

\[
\text{BLEU}^- = BP \times \sqrt[\text{NIST}]{\tilde{p}_1 \tilde{p}_2 \ldots \tilde{p}_N}
\]

として smoothed BLEU が求められる。

具体例を示す。以下の例文 2 を考える。なお、以下で用いる例文の原文と基準翻訳文はすべて例文 1 と同じであるので記述を省略する。

[例文 2]
機械翻訳文 Connector main part 14 is mounted in substrate 12
機械翻訳文に含まれる 4 プラックは \{Connector main part 14, main part 14 is, part 14 is mounted, 14 is mounted in, is mounted in substrate, mounted in substrate 12\} であるが、これらはいずれも基準翻訳文には含まれていない。したがって \(p_4 = 0 \) となり、オリジナルの BLEU は 0 となってしまう。一方、\(\tilde{p}_4 = 1/(2 \times 6) = 0.0833 \) となり、\(\text{BLEU}^- = 0.2089 \) となる。

6.1.3 NIST
NIST (National Institute of Standards and Technology) は基本的に BLEU の考え方を継承し、改良を加えた評価基準であり、以下の式で定義される[4]。

\[
\text{NIST} = BP_{\text{NIST}} \sum_{n=1}^{N} q_n
\]

ここで \(q_n \) は

\[
q_n = \frac{\sum_{w_1, w_2, \ldots, w_n \in G_n} \text{Info}(w_1, w_2, \ldots, w_n)}{\sum_{w_1, w_2, \ldots, w_n \in G_n} 1}
\]

で与えられる。\(N \) は通常 5 が用いられる。\(\text{NIST} \) は 0 以上であるが、BLEU と異なり 1 以上の値をとることもある。定義式において BLEU と異なる点は 3 点ある。

(1) BLEU は相乗平均を用いていたが NIST では和を用いている。
(2) brevity penalty の計算方法が異なる。
(3) \(q_n \) の分子の関数形が BLEU では \(C_{\text{clip}}^{\text{test}}(w_1, w_2, \ldots, w_n) \) であったが NIST では \(\text{Info}(w_1, w_2, \ldots, w_n) \) となっている。分母も BLEU では機械翻訳文に含まれる n プラックの延べ度数であったが、NIST では異なり度数となっている。

19 NIST は組織の名前であるが、この自動評価基準は、NIST が主催している評価型 workshop で用いられており、NIST の名で呼ばれている。
(1)によって$q_n = 0$となるnがあっても NIST=0 となるとは限らない。つまり smoothing を必ずしも必要としない。(2)に関しては

$$BP_{NIST} = \exp\{\beta \log^2[\min\left(\frac{c}{r}, 1\right)]\}$$

である。βは$c/r=2/3$のときに$BP_{NIST} = 0.5$となるように定められる。c/rに対する BP と BP$_{NIST}$の値の変化を図 1 に示す。$c/r > 0.761$の時に$BP_{NIST} \geq BP$となり、$c/r < 0.761$の時には逆になる。

図 6.1.3-1 基準翻訳文の単語数(r)と機械翻訳文の単語数(c)の比に対する brevity penalty

(4)に示す Info は以下のように定義され、基準翻訳文において、$w_1, w_2, ..., w_{n-1}$が持つ情報量から$w_1, w_2, ..., w_n$が持つ情報量への増加分を表している。ここで$C^{ref}(w_1, w_2, ..., w_n)$は前述した基準翻訳文に含まれる$w_1, w_2, ..., w_n$の頻度である。

$$\text{Info}(w_1, w_2, ..., w_n) = \begin{cases} \log_2\left(\frac{C^{ref}(w_1, w_2, ..., w_{n-1})}{C^{ref}(w_1, w_2, ..., w_n)}\right), & C^{ref}(w_1, w_2, ..., w_{n-1}) > 0 \\ 0, & C^{ref}(w_1, w_2, ..., w_n) = 0 \\ \text{else} & \end{cases}$$

ただし、$n=1$ の場合は、$C^{ref}(w_1, w_2, ..., w_{n-1})$を基準翻訳文に含まれる全単語数とする。

例文 1 において Info は以下のようになる。

$$\text{Info(の, substrate)} = \log_2\left(\frac{C^{ref}(の, substrate)}{C^{ref}(の)}\right) = \log_2\left(\frac{2}{1}\right) = 1$$

$$\text{Info(mounted, on)} = \log_2\left(\frac{C^{ref}(mounted)}{C^{ref}(mounted, on)}\right) = \log_2\left(\frac{1}{1}\right) = 0$$

$$\text{Info(の)} = \log_2\left(\frac{11}{C^{ref}(の)}\right) = \log_2\left(\frac{11}{2}\right) = 2.46$$
\[
\text{Info(mounted)} = \log_2 \left(\frac{11}{C_{\text{ref}(\text{mounted})}} \right) = \log_2 \left(\frac{11}{1} \right) = 3.46
\]
となる。例文 1 に対して、\(q_1 = 2.9631, q_2 = 0.2, q_3 = 0, q_4 = 0 \)となり、さらに \(BP_{\text{NIST}} = 1 \)となるため NIST=3.1631である。

6.1.4 RIBES

BLEU と NIST のもう一つの問題点は、n グラムという局所的な情報のみを用いているため、語順の大幅な入れ替えがある日英翻訳などの評価に用いた場合、評価の信頼性が劣る点である。実際 NTCIR-9 の特許翻訳タスク、日英サブタスクでは、BLEU や NIST の値と人手評価結果(Adequacy)との相関係数が負になっている[5]。そこで大域的な語順の類似性も考慮した自動評価基準として RIBES が提案されている[6]。RIBES では基準翻訳文と機械翻訳文との語順の類似性を Kendall の順位相関係数を用いて数えている。Kendall の順位相関係数は次のようにして計算される。まず機械翻訳文と基準翻訳文との間に単語対応を求め、2 個の単語対応の組み合わせについて単語の出現順序が機械翻訳文と基準翻訳文との間で同順か逆順かの出現数を計数する。

具体例で説明する。

[例文 3]

機械翻訳文 On the substrate 12, the connector main body 14 is mounted
の場合を考えると、単語対応が図のように得られる。

基準翻訳文 The connector main body 14 is mounted on the substrate 12
機械翻訳文 On the substrate 12, the connector main body 14 is mounted

図 6.1.4-1 単語対応例

このとき 2 個の単語対応の組み合わせに対して同順(S)と逆順(I)が図 3 のように求まる。例えば、on と substrate の組み合わせの場合、基準翻訳文での出現位置は、おのおのの 8 と 10 であり、機械翻訳文での出現位置は 1 と 3 である。つまり基準翻訳文と機械翻訳文のいずれでも on より substrate のほうが後に出現しており、同順となる。一方、on と connector では、基準翻訳文での出現位置が、おのおのの 8 と 2 であるのに対して、機械翻訳文での出現位置は 1 と 6 である。そこで逆順となる。

文献[5]の Table 19 (page 573)参照。Pearson の相関係数が BLEU で −0.241、NIST で−0.286である。
同順の個数をC_sとし、逆順の個数をC_iとする。また、単語対応の個数をnとすると、2個の単語対応の組み合わせの総数は$n(n-1)/2$である。このとき Kendall の順位相関係数（τ）は

$$\tau = \frac{C_s - C_i}{n(n-1)/2}$$

で与えられる。2個の単語対応の組み合わせについて、すべてが同順であれば$\tau = 1$となり、全てが逆順になれば$\tau = -1$となる。さらにτの範囲を[0,1]に正規化した NKT (Normalized Kendall's τ)を

$$NKT = \frac{\tau + 1}{2}$$

と定義する。

例文3の場合は

$$\tau = \frac{27 - 28}{11(11 - 1)/2} = -0.018$$

$$NKT = \frac{-0.018 + 1}{2} = 0.491$$

となる。

τやNKTには次の性質があり、このままでは自動評価基準として不適切である。
(1) 単語対応の個数が少なく、2個の単語対応の組み合わせに同順が多い場合に高い値となる。
(2) 機械翻訳文が短く、2個の単語対応の組み合わせに同順が多い場合に高い値となる。
例えば、

[例文 4]
機械翻訳文　A connected major part 15 was inserted in the substrate 12
とすると、単語対応は (the, substrate, 12)のみであり、2 個の単語対応の組み合わせは全て同順であるので NKT=1 となる。また

[例文 5]
機械翻訳文　is mounted
に対しても、NKT=1となる。例文 4 は(1)の結果であり、例文 5 は(2)の結果である。

RIBES では、上記問題点の(1)に対応するために以下に述べるペナルティ P を用いている。また、(2)に対応するために BLEU の brevity penalty と同じ BP を用いている。ここで、P は以下の式で定義される。

\[P = \frac{n}{c} \]

n は単語対応の個数、c は機械翻訳文の単語数である。最終的に RIBES は

\[\text{RIBES} = NKT \cdot P^\alpha \cdot BP^\beta \]

として定義される。ここで \(\alpha \geq 0 \) と \(\beta \geq 0 \) はパラメータであり、\(\alpha = 0.25 \), \(\beta = 0.1 \) が初期設定されている。RIBES は 0 以上 1 以下の値をとり、大きいほど基準翻訳文と機械翻訳文が近いと評価される。

[例文 6]
機械翻訳文　The substrate 12 is mounted on the connector main body 14
とすると、例文 6 は基準翻訳文とまったく異なる意味を持つが、局所的な n グラムの範囲では基準翻訳文と類似している。その結果、BLEU = 0.375 となる。一方、大域的語順を考慮した RIBES では、RIBES = 0.273 と BLEU に比較して小さい値となる。

実際、前述した NTCIR-9 のデータ[5]では、BLEU や NIST の値と人手評価結果(Adequacy)との相関係数が負になっていたが、RIBES の値と Adequacy との相関係数は正となっている。

参考文献
[1] 特許庁: 特許審査関連情報の機械翻訳による英語提供に対する精度評価に関する調査報告書、平成 23 年 2 月。

文献[5]の Table 19 (page 573)参照。Pearson の相関係数が 0.579 である。

6.2 自由記載部分に基づく日英対訳コーパス

納入物である「自由記載部分に基づく日英対訳コーパス」は、拒絶理由通知書、拒絶査定、審決の自由記載部分から選定した日本語原文及びその英語基準翻訳文に加え、各機械翻訳サービスの機械翻訳文やその人手評価、自動評価結果等を加えたデータ形式とした。「自由記載部分に基づく日英対訳コーパス」の様式を以下に示す。

<table>
<thead>
<tr>
<th>項番</th>
<th>項目名</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>seq</td>
<td>項目番号</td>
</tr>
<tr>
<td>2</td>
<td>出願番号</td>
<td>出願番号</td>
</tr>
<tr>
<td>3</td>
<td>審判番号</td>
<td>審判番号</td>
</tr>
<tr>
<td>4</td>
<td>書類</td>
<td>原文書類の種類（拒絶理由、拒絶査定、審決）</td>
</tr>
<tr>
<td>5</td>
<td>審査部</td>
<td>原文審査部の分類</td>
</tr>
<tr>
<td>6</td>
<td>記載内容</td>
<td>認定、対比、判断</td>
</tr>
<tr>
<td>7</td>
<td>日本語</td>
<td>拒絶理由通知書、拒絶査定、審決の自由記載部分から選定した日本語原文</td>
</tr>
<tr>
<td>8</td>
<td>基準翻訳文</td>
<td>選定された日本語原文に対する英語基準翻訳文</td>
</tr>
<tr>
<td>9</td>
<td>機械翻訳文</td>
<td>RBMT①</td>
</tr>
<tr>
<td>10</td>
<td>評価者A</td>
<td>人手評価値</td>
</tr>
<tr>
<td>11</td>
<td>評価者B</td>
<td>人手評価値</td>
</tr>
<tr>
<td>12</td>
<td>BLEU</td>
<td>自動評価値</td>
</tr>
<tr>
<td>13</td>
<td>NIST</td>
<td>自動評価値</td>
</tr>
<tr>
<td>14</td>
<td>RIBES</td>
<td>自動評価値</td>
</tr>
<tr>
<td>15</td>
<td>機械翻訳文</td>
<td>RBMT②（初回評価）</td>
</tr>
<tr>
<td>16</td>
<td>評価者A</td>
<td>人手評価値</td>
</tr>
<tr>
<td>17</td>
<td>評価者B</td>
<td>人手評価値</td>
</tr>
<tr>
<td>18</td>
<td>BLEU</td>
<td>自動評価値</td>
</tr>
<tr>
<td>19</td>
<td>NIST</td>
<td>自動評価値</td>
</tr>
<tr>
<td>20</td>
<td>RIBES</td>
<td>自動評価値</td>
</tr>
<tr>
<td>21</td>
<td>機械翻訳文</td>
<td>RBMT②（定型文、用語登録後）</td>
</tr>
<tr>
<td>22</td>
<td>評価者A</td>
<td>人手評価値（対象文である101文のみ）</td>
</tr>
<tr>
<td>23</td>
<td>評価者B</td>
<td>人手評価値（対象文である101文のみ）</td>
</tr>
<tr>
<td>24</td>
<td>BLEU</td>
<td>自動評価値</td>
</tr>
<tr>
<td>25</td>
<td>NIST</td>
<td>自動評価値</td>
</tr>
<tr>
<td>26</td>
<td>RIBES</td>
<td>自動評価値</td>
</tr>
<tr>
<td>27</td>
<td>機械翻訳文</td>
<td>SMT（初回評価）</td>
</tr>
<tr>
<td>28</td>
<td>評価者A</td>
<td>人手評価値</td>
</tr>
<tr>
<td>29</td>
<td>評価者B</td>
<td>人手評価値</td>
</tr>
<tr>
<td>30</td>
<td>BLEU</td>
<td>自動評価値</td>
</tr>
<tr>
<td>31</td>
<td>NIST</td>
<td>自動評価値</td>
</tr>
</tbody>
</table>
6.3 汎用文例に基づく日英対訳コーパス

納入物である「汎用文例に基づく日英対訳コーパス」は、汎用文例リストから選定した日本語原文及びその英語基準翻訳文に加え、各機械翻訳サービスの機械翻訳文やその人手評価、自動評価結果等を加えたデータ形式とした。

「汎用文例に基づく日英対訳コーパス」の様式を以下に示す。

<table>
<thead>
<tr>
<th>項番</th>
<th>項目名</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>seq</td>
<td>項目番号</td>
</tr>
<tr>
<td>2</td>
<td>出願番号</td>
<td>出願番号</td>
</tr>
<tr>
<td>3</td>
<td>審判番号</td>
<td>審判番号</td>
</tr>
<tr>
<td>4</td>
<td>書類</td>
<td>原文書類の種類（汎用文例）</td>
</tr>
<tr>
<td>5</td>
<td>予備 1</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>予備 2</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>日本語</td>
<td>汎用文例リストの文例から選定した日本語原文</td>
</tr>
<tr>
<td>8</td>
<td>基準翻訳文</td>
<td>選定された日本語原文に対する英語基準翻訳文</td>
</tr>
<tr>
<td>9</td>
<td>機械翻訳文</td>
<td>RBMT①</td>
</tr>
<tr>
<td>10</td>
<td>評価者A</td>
<td>人手評価値</td>
</tr>
<tr>
<td>11</td>
<td>評価者B</td>
<td>人手評価値</td>
</tr>
<tr>
<td>12</td>
<td>BLEU</td>
<td>自動評価値</td>
</tr>
<tr>
<td>13</td>
<td>NIST</td>
<td>自動評価値</td>
</tr>
<tr>
<td>14</td>
<td>RIBES</td>
<td>自動評価値</td>
</tr>
<tr>
<td>15</td>
<td>機械翻訳文</td>
<td>RBMT②（初回評価）</td>
</tr>
<tr>
<td>16</td>
<td>評価者A</td>
<td>人手評価値</td>
</tr>
<tr>
<td>17</td>
<td>評価者B</td>
<td>人手評価値</td>
</tr>
<tr>
<td>18</td>
<td>BLEU</td>
<td>自動評価値</td>
</tr>
<tr>
<td>19</td>
<td>NIST</td>
<td>自動評価値</td>
</tr>
<tr>
<td>20</td>
<td>RIBES</td>
<td>自動評価値</td>
</tr>
<tr>
<td>21</td>
<td>機械翻訳文</td>
<td>RBMT②（定型文、用語登録後）</td>
</tr>
<tr>
<td>22</td>
<td>評価者A</td>
<td>人手評価値（対象文である101文のみ）</td>
</tr>
<tr>
<td>23</td>
<td>評価者B</td>
<td>人手評価値（対象文である101文のみ）</td>
</tr>
<tr>
<td>24</td>
<td>BLEU</td>
<td>自動評価値</td>
</tr>
<tr>
<td>25</td>
<td>NIST</td>
<td>自動評価値</td>
</tr>
<tr>
<td>26</td>
<td>RIBES</td>
<td>自動評価値</td>
</tr>
<tr>
<td>27</td>
<td>機械翻訳文</td>
<td>SMT（初回評価）</td>
</tr>
<tr>
<td>28</td>
<td>評価者A</td>
<td>人手評価値</td>
</tr>
<tr>
<td>29</td>
<td>評価者B</td>
<td>人手評価値</td>
</tr>
<tr>
<td>30</td>
<td>BLEU</td>
<td>自動評価値</td>
</tr>
<tr>
<td>31</td>
<td>NIST</td>
<td>自動評価値</td>
</tr>
<tr>
<td>32</td>
<td>RIBES</td>
<td>自動評価値</td>
</tr>
<tr>
<td>33</td>
<td>機械翻訳文</td>
<td>SMT（定型文、用語登録後）</td>
</tr>
<tr>
<td>34</td>
<td>評価者A</td>
<td>人手評価値（対象文である101文のみ）</td>
</tr>
<tr>
<td>35</td>
<td>評価者B</td>
<td>人手評価値（対象文である101文のみ）</td>
</tr>
<tr>
<td>36</td>
<td>BLEU</td>
<td>自動評価値</td>
</tr>
<tr>
<td>37</td>
<td>NIST</td>
<td>自動評価値</td>
</tr>
<tr>
<td>38</td>
<td>RIBES</td>
<td>自動評価値</td>
</tr>
<tr>
<td>39</td>
<td>機械翻訳文</td>
<td>NMT（初回評価）</td>
</tr>
<tr>
<td>40</td>
<td>評価者A</td>
<td>人手評価値</td>
</tr>
<tr>
<td>41</td>
<td>評価者B</td>
<td>人手評価値</td>
</tr>
<tr>
<td>42</td>
<td>BLEU</td>
<td>自動評価値</td>
</tr>
<tr>
<td>43</td>
<td>NIST</td>
<td>自動評価値</td>
</tr>
<tr>
<td>44</td>
<td>RIBES</td>
<td>自動評価値</td>
</tr>
<tr>
<td>45</td>
<td>文長</td>
<td>原文の長さ</td>
</tr>
<tr>
<td>46</td>
<td>短中長</td>
<td>短文、中文、長文</td>
</tr>
</tbody>
</table>

6.4 審査基準、審査ハンドブック、PCTハンドブックから作成した日英対訳コーパス

納入物である「審査基準、審査ハンドブック、PCTハンドブックから作成した日英対訳コーパス」は、貸与物である審査基準、審査ハンドブック、PCTハンドブックの日本語版、英語版のWordファイルから人手により一文単位で日英対訳の対応付けを行い、それぞれの文数と対応付けの可否を入力したExcelファイル一式である。

「審査基準、審査ハンドブック、PCTハンドブックから作成した日英対訳コーパス」のデ
データサンプルを以下に示す。

<table>
<thead>
<tr>
<th>項番</th>
<th>項目名</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>seq</td>
<td>項目番号</td>
</tr>
<tr>
<td>2</td>
<td>出願番号</td>
<td>出願番号</td>
</tr>
<tr>
<td>3</td>
<td>審判番号</td>
<td>審判番号</td>
</tr>
<tr>
<td>4</td>
<td>書類</td>
<td>原文書類の種類（拒絶理由、拒絶査定、審決、汎用文例）</td>
</tr>
<tr>
<td>5</td>
<td>審査部</td>
<td>原文の分類（審査部、V2起案条文、拒絶査定、通知書、補正却下、前置審）</td>
</tr>
<tr>
<td>6</td>
<td>記載内容</td>
<td>認定、対比、判断</td>
</tr>
<tr>
<td>7</td>
<td>日本語</td>
<td>拒絶理由通知書、拒絶査定、審決、汎用文例の自由記載部分または文例から選定された日本語原文に対する英語基準翻訳文</td>
</tr>
<tr>
<td>8</td>
<td>基準翻訳文</td>
<td>選定された日本語原文に対する英語基準翻訳文</td>
</tr>
<tr>
<td>9</td>
<td>重要用語（日本語）</td>
<td>選定された重要用語</td>
</tr>
<tr>
<td>10</td>
<td>重要用語（基準翻訳）</td>
<td>選定された重要用語に対する英語基準翻訳</td>
</tr>
<tr>
<td>11</td>
<td>機械翻訳文</td>
<td>RBMT①</td>
</tr>
<tr>
<td>12</td>
<td>評価者A</td>
<td>人手評価値</td>
</tr>
<tr>
<td>13</td>
<td>評価者B</td>
<td>人手評価値</td>
</tr>
<tr>
<td>14</td>
<td>機械翻訳文</td>
<td>RBMT②</td>
</tr>
<tr>
<td>15</td>
<td>評価者A</td>
<td>人手評価値</td>
</tr>
<tr>
<td>16</td>
<td>評価者B</td>
<td>人手評価値</td>
</tr>
<tr>
<td>17</td>
<td>機械翻訳文</td>
<td>SMT</td>
</tr>
</tbody>
</table>

6.5 拒絶理由通知書等の重要用語の翻訳精度の評価

項番 2.3.1(2)「重要用語」での機械翻訳文の重要用語の評価結果は、選定した59語の重要用語及びその英語基準翻訳に加え、各機械翻訳サービスの機械翻訳文やその人手評価を加えたデータ形式として納入する。

「拒絶理由通知書等の重要用語の翻訳精度の評価」の様式を以下に示す。
6.6 請求項の翻訳精度の評価

項番 2.3.1(1) (1-2)「請求項」での請求項の翻訳精度の評価結果は、NMT の機械翻訳文やその人手評価を加えたデータ形式として納入する。

「請求項の翻訳精度の評価」の様式を以下に示す。

<table>
<thead>
<tr>
<th>項番</th>
<th>項目名</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>key</td>
<td>項目番号</td>
</tr>
<tr>
<td>2</td>
<td>記事</td>
<td>原文記載箇所（請求項、詳細な説明）</td>
</tr>
<tr>
<td>3</td>
<td>短中長</td>
<td>原文の長さ（短文、中文、長文）</td>
</tr>
<tr>
<td>4</td>
<td>原文</td>
<td>日本語原文</td>
</tr>
<tr>
<td>5</td>
<td>基準翻訳文</td>
<td>英語基準翻訳文</td>
</tr>
<tr>
<td>6</td>
<td>NMT</td>
<td>平成 28 年度の NMT</td>
</tr>
<tr>
<td>7</td>
<td>評価者 A</td>
<td>人手評価値</td>
</tr>
<tr>
<td>8</td>
<td>評価者 B</td>
<td>人手評価値</td>
</tr>
<tr>
<td>9</td>
<td>BLEU</td>
<td>自動評価値</td>
</tr>
<tr>
<td>10</td>
<td>NIST</td>
<td>自動評価値</td>
</tr>
<tr>
<td>11</td>
<td>RIBES</td>
<td>自動評価値</td>
</tr>
<tr>
<td>12</td>
<td>NMT</td>
<td>平成 27 年度の NMT</td>
</tr>
<tr>
<td>13</td>
<td>評価者 A</td>
<td>人手評価値</td>
</tr>
<tr>
<td>14</td>
<td>評価者 B</td>
<td>人手評価値</td>
</tr>
<tr>
<td>15</td>
<td>BLEU</td>
<td>自動評価値</td>
</tr>
<tr>
<td>16</td>
<td>NIST</td>
<td>自動評価値</td>
</tr>
<tr>
<td>17</td>
<td>RIBES</td>
<td>自動評価値</td>
</tr>
</tbody>
</table>

6.7 定型文、用語等の対訳リスト

納入物である「定型文、用語等の対訳リスト」のうち、項番 3.2.2「精度向上のための定型文、用語の選定」にて選定した RBMT②と SMT のそれぞれがサポートする 3 種類の追加辞書用データサンプルを以下に示す。
6.7.1 RBMT

RBMT②の追加辞書用データサンプルを以下に示す。ユーザ辞書とメモリ辞書がサポートするデータ形式はテキスト形式と csv 形式であるが、ここではテキスト形式を例示する。パターン辞書については、データの一括インポート及びエクスポート機能を備えていないため、内容を Excel にて出力したものを例示する。

(1) ユーザ辞書

<table>
<thead>
<tr>
<th>項番</th>
<th>漢字</th>
<th>英語</th>
<th>活用</th>
<th>発音</th>
<th>複数形</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>パラグラフ</td>
<td>paragraph</td>
<td><1></td>
<td>C</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td>内容</td>
<td>within the range from</td>
<td><1> to <2></td>
<td>C</td>
<td>U</td>
</tr>
<tr>
<td>2</td>
<td>二つ</td>
<td>two</td>
<td>C</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>咬み込み</td>
<td>bite</td>
<td>C</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>盲状に</td>
<td>blind-like</td>
<td>C</td>
<td>R</td>
<td>前置</td>
</tr>
<tr>
<td>5</td>
<td>インク溜まり</td>
<td>ink reservoir</td>
<td>V</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>キノフォーム</td>
<td>kinoform</td>
<td>C</td>
<td>S</td>
<td></td>
</tr>
</tbody>
</table>

(2) パターン辞書

パターン辞書については、項番 4.2.2「定型文、用語等の対訳リスト作成」での悪化事例での見直しにより、当初の追加登録から一部削除した。
(3) メモリ辞書

J: この出願については、現時点では拒絶の理由を発見しないから、本通知の発送の日から1月（在外者では3月）経過後、出願日の遡及を認めずに、特許査定をする。

E: As for this application, no reason for refusal has been found at the present time, hence the Decision of the patent thereof will be conducted, without approving any retroactivity of the filing date, after lapse of one month from the date of sending of this notification (after lapse of three months for overseas residents).

COM:
C_DATE:2017.02.09.16:21:02
C_USR:admin
E_DATE:
E_USR:

J: しかしながら、不可能・非実際的事情が存在することについて、明細書等に記載がなく、また、出願人から主張・立証がされていないため、その存在を認める理由は見いだせない。

E: However, with regard to existence of impossible or impractical circumstances, no description in specification or the like is found, and no assertion and authentication from the applicant are made, whereby reasons for finding the existence cannot be found.

COM:
C_DATE:2017.02.09.16:21:02
C_USR:admin
E_DATE:
E_USR:

6.7.2 SMT

SMT に登録したデータはタブ区切りのテキスト形式（tsv ファイル）であるが、ここでは実際に登録を行った後の SMT のイメージを例とする。

(1) 対訳データ

(1) 発明者名、実業者の名称は、発明日（優先権日を含む場合）から 1 年以内に外国語提出書面及び外国語提出書面の日本語訳を提出しなければならない（第 36 条第 2 項）。

(1) The applicant who files a foreign language application is required to submit the translation into Japanese of the foreign language document and foreign language abstract document within 16 months from the filing date (earliest priority date, in case of the application claiming priority) (Article 36bis(2)).

(2) 定型表現データ

※可変にする箇所は[x,yd]（yd はデータ中でユニークな半角数字）として登録。

(3) 用語データ

<table>
<thead>
<tr>
<th>2つ</th>
<th>two</th>
</tr>
</thead>
<tbody>
<tr>
<td>くい込み</td>
<td>bite</td>
</tr>
<tr>
<td>インク搬送</td>
<td>ink reservoir</td>
</tr>
<tr>
<td>インク偏り</td>
<td>ink reservoir</td>
</tr>
<tr>
<td>キノフォーム</td>
<td>kinoform</td>
</tr>
<tr>
<td>クロロキ酸メチル</td>
<td>methyl chloroformate</td>
</tr>
</tbody>
</table>
6.8 評価結果グラフ

6.8.1 自動評価（定型文、用語登録前）

(1) 文長別

図6.8.1-1 自動評価（BLEU）(短文)

図6.8.1-2 自動評価（BLEU）(中文)

図6.8.1-3 自動評価（BLEU）(長文)
図 6.8.1-7 自動評価（RIBES）（短文）

図 6.8.1-8 自動評価（RIBES）（中文）

図 6.8.1-9 自動評価（RIBES）（長文）
(2) 記載内容別

図 6.8.1-10 自動評価（BLEU）

図 6.8.1-11 自動評価（NIST）

図 6.8.1-12 自動評価（RIBES）
(3) 書類別

図 6.8.1-13 自動評価（BLEU）

図 6.8.1-14 自動評価（NIST）

図 6.8.1-15 自動評価（RIBES）
6.8.2 人手評価（定型文、用語登録前後）

(1) 審査部別

図 6.8.2-1 内容伝達レベル（審査第一部）

図 6.8.2-2 内容伝達レベル（審査第二部）

図 6.8.2-3 内容伝達レベル（審査第三部）

図 6.8.2-4 内容伝達レベル（審査第四部）
(2) 記載内容別
図 6.8.2-5 内容伝達レベル（対比）
図 6.8.2-6 内容伝達レベル（認定）
図 6.8.2-7 内容伝達レベル（判断）
図 6.8.2-8 内容伝達レベル（拒絶理由通知）

図 6.8.2-9 内容伝達レベル（拒絶査定）

図 6.8.2-10 内容伝達レベル（審決）

図 6.8.2-11 内容伝達レベル（汎用文例）
6.8.3 自動評価（定型文、用語登録前後）

(1) 文長別

図 6.8.3-1 自動評価（BLEU）（短文）

図 6.8.3-2 自動評価（BLEU）（中文）

図 6.8.3-3 自動評価（BLEU）（長文）
図 6.8.3-4 自動評価（NIST）（短文）

図 6.8.3-5 自動評価（NIST）（中文）

図 6.8.3-6 自動評価（NIST）（長文）
図 6.8.3-7 自動評価（RIBES）（短文）

図 6.8.3-8 自動評価（RIBES）（中文）

図 6.8.3-9 自動評価（RIBES）（長文）
(2) 審査部別

図 6.8.3-10 自動評価 (BLEU)

図 6.8.3-11 自動評価 (NIST)

図 6.8.3-12 自動評価 (RIBES)
(3) 記載内容別

図 6.8.3-13 自動評価（BLEU）

図 6.8.3-14 自動評価（NIST）

図 6.8.3-15 自動評価（RIBES）
(4) 書類別

図 6.8.3-16 自動評価（BLEU）

図 6.8.3-17 自動評価（NIST）

図 6.8.3-18 自動評価（RIBES）